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Summary
The last decade has witnessed a significant advancement 
in medical science and technologies. The cell and gene 
therapies represent remarkable outcomes of such pro-
gress achieved in a very short timeframe. The COVID-19 
pandemic has created roadblocks for patients to access 
hospitals for diagnosis and treatments since the onset of 
its first-wave. On the contrary, this one-year leap has wit-
nessed unprecedented technological advances, especially 
in terms of mRNA-based therapies and their regulations. 
The present review focuses on CAR-T as a model with 
all key attributes and implications in complicated chains 
from early science to a variety of models and trends in 
clinical practice.
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Introduction 
Cell and gene therapy comprise a booming avenue in de-
vising novel, emerging healthcare products during the last 
decade. One such approach with a variety of applications 
includes CAR-T therapy, which, owing to its innovative and 
effective approach, has leaped outstandingly fast from idea 
to clinical practice. Contrary to the prolonged procedure of 
FDA approval, as observed in case of conventional drugs, 
the anti-CD-19 CAR-T, KYMRIAH was approved by the 
FDA within a short span of 4 years in 2017 [1, 2]. This ther-
apeutic was imminently bestowed with the title of the ASCO 
breakthrough of the year in January 2018 [3]. However, cell 
and gene therapies such as KYMRIAH are distinct from the 
"ordinary" drugs in most aspects, and such differences are 
commonly shared between most cell and gene therapies. 
In this review, we will focus on some distinct features of such 

therapies throughout their development, from the R&D 
bench to the patient bedside, including the regulatory and 
business aspects of such new therapies which are often over-
looked in the reviews on this topic. 

The journey of a new drug from labs to shelves is divided 
into five main areas: R&D, production, regulatory approval, 
business, and funding. If one of these aspects is missing or is 
defunct, the drug, irrespective of its efficacy or safety, fails to 
reach the clinic. The new cell and gene therapies are different 
from the common drugs in all these areas, as CAR-Ts vividly 
demonstrate or highlight such differences as well as features 
that are common to the cell and gene therapies, it is the focus 
of this review which emphasizes on each of these areas.

Area #1. R&D and emerging technologies 
The most distinct feature of CAR-T is that it is based on the 
concept of personalized medicine which has completely 
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shifted the healthcare ecosystem paradigm from the "one pill 
fits all" to "every pill made for one patient". The most fasci-
nating aspect of this approach is that it can be effective, not 
only from a therapeutic but from a business perspective as 
well. Moreover, these personalized drugs do not disrupt the 
previous approach, since they can fit well together.

Although the CD-19 CAR-T therapies usher the prospect of 
long-lasting recovery from advanced stages of cancer which 
were previously thought incurable [4], its road to approval 
is fraught with the reports of patient deaths due to cytokine 
storm [5]. At present, researchers are exposed to new chal-
lenges to enable widespread application of this therapy in 
new areas like infectious diseases, to cure solid tumors, and 
to enhance its safety, efficacy as well as affordability. To ac-
complish these goals, the key role is being played by the R&D 
sector and academic research, which are advancing towards 
clinical trials with new technology (Table 1).

Firstly, the process of development of personalized drugs 
shares numerous features with those of the new product de-
velopment strategies from information technology (IT), or 
agile processes [6], involving 3 three-step cycle testing ideas 
like:
–Producing minimal viable product (MVP) as fast as pos-
sible.
–Measuring the performance with real-life patients (custom-
ers) and gaining knowledge about the improvements needed.
– Repeating [7], and application of agile development meth-
odology.

In this process, every iteration adds some additional features, 
and fast testing with real-life data shows whether the ideas 
are right or wrong. One important feature of such products is 
that they must be very flexible, allowing changes in parts, but 
maintain the basic functional concept. The software-based 
products are the best fit for this since they usually utilize 
the same platform which is used to design the product. 

Table 1. Cell therapy production. Emerging models

Approach Investments
needed

External conditions Production volume Examples

Big plant (good old 
big pharma approach) 

100 MUSD per 
facility

Fast and safe all-country 
delivery, no borders to cross 
(US, EU) for distribution 

Big production 
volume (100-s mln of 
people population)

CAR-T:
Novartis – 97MUSD in 
one facility in Europe 
for KYMRACH – 150 
MUSD cell therapies

Small-scale facility 
very close or inside 
a hospital research 

1-10 MUSD per 
facility

Mostly therapy for patients 
of clinic, or clinics in one 
town.
No problems with delivery

Limited production 
volume (town with 
millions of people)

Stem cell products, 
fibroblasts etc. that 
use to fall into minimal 
manipulated products, 
CAR-T based on univer-
sity/clinic concortia

Medium scale facility 
based on existing 
life-science production

From 0,5 to 10 
MUSD depend-
ing on existed 
equipment

Fast and safe 
within-country delivery

Medium production 
volume 
(small country)

New idea for CAR-T 
or other complex cell 
products

This is the case with platforms in biologics, cell, and gene 
therapies; it allows the use of a platform-based approach 
for development. Every drug that is based on introducing 
changes in the DNA or RNA is a kind of "reprogramming" or 
"genetic software development" suggesting that some effec-
tive approaches from IT can be transferred to drug develop-
ment. This includes all gene and cell-based therapies such as 
CAR-Ts, or plasmid DNA, or several mRNA-based COVID 
vaccines, CRISPR-based therapies, etc.

Although there are differences in time frames and regulatory 
pathways, the approach utilized for personalized drug-deve-
lopment appears to be more similar to this iteration-based 
development strategy than the standard one-at-a-time per-
fect drug development strategy used in pharmaceutical in-
dustry in the previous as well as present times. Indeed, if we 
look at the most splendid example- how CAR-T technology 
developed into its present and future, we can see many simi- 
larities.

The first-generation CAR-T therapies were a breakthrough 
technology in the 1980s [9]; however, despite big hopes, 
its design was too simple to generate reliable outcomes in 
clinical trials [8, 10]. Technologically, the first generation of 
CARs included only the CD3ζ signaling endodomain fused 
to the extracellular scFv to act as an activator of the T cells. 
In terms of IT development, it fell exactly in the "minimal 
viable product" (MVP) category, the product that has the ab-
solute minimum set of features to function. However, despite 
promising preclinical results, the clinical trials demonstrated 
caveats such as poor anti-tumor efficacy in patients, caused 
by low-level CAR-T cell activation. Therefore, the next 2nd 
generation was introduced, which included co-stimulatory 
domains for additional activation. This design was high-
ly successful in the clinical trials in treating hematological 
malignancies, such as acute lymphoblastic leukemia (ALL), 
diffuse large B cell lymphoma (DLBCL), and chronic lym-
phocytic leukemia (CLL). This success was confirmed by 
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the FDA approval of two CD-19 CAR-T drugs, KYMRIAH 
(Tisagenlecleucel) for r/r ALL and r/r large B cell lympho-
ma and YESCARTA (Axicabtagene ciloleucel) for r/r extent 
CLL.

In the process of successful clinical trials for both of these 
drugs, the core of the "agile development approach" was used 
to adapt for its clinical features and limitations. Additionally, 
various CAR-T cell-mediated toxicities were reported, such 
as tumor lysis syndrome [11], cytokine release syndrome 
(CRS), neurotoxicity [12], and on-target off-tumor toxicity 
[13], leading to a few patient deaths during the clinical trials.

The most frequent and dangerous feature of CAR-T thera-
py is cytokine release syndrome (CRS) [14], which leads to 
some lethal cases during the trials. The iteration product de-
velopment cycle, which was at this point enabled by the FDA 
regulations for adaptive clinical trial design, allowed the 
identification of strategies to avert this risk by introducing 
several therapeutic options for CRS, such as anti-IL-6 thera-
py in case of CRS development, and tools to observe the pa-
tient, such as hospitalization for a week after CAR-T infusion 
to closely monitor for adverse reactions [12, 15].

However, the second CAR-T generation failed to show 
promising results in the case of solid tumors and had several 
limitations in treating hematological malignancies, such as 
antigen loss and consequent tumor escape. Such peculiarities 
of the second generation CAR-T limited the long-term suc-
cess of CAR-T cell therapy for a quite large group of patients, 
leading to relapses or lack of tumor response [15, 16]. With 
further studies, new ideas emerged, leading to the third and 
fourth generation of CAR-T cells, comprising more receptor 
domains with different functions added to the chimeric re-
ceptor (Fig. 1).

The third-generation CAR-T cells combined the signaling 
potential of two costimulatory domains (CD28 and 4-1BB). 
To overcome the limitations of the third generation, the 
fourth generation of CAR-T assimilated various improve-

Figure 1. Agile Development process and CAR-T (adapted from [7, 8])

ments in different parts of the chimeric construct, mostly 
linked with solid tumor therapies. The antitumor activity of 
the fourth-generation CAR-T cells was enhanced by features 
such as additional transgenes for cytokine secretion (e.g., IL-
12) or additional costimulatory ligands. Based on the same 
principle, armored CAR-T cells and TRUCKs (T cells re-
directed for universal cytokine killing) are constructed i.e., 
they were modified to express not only CAR but also the in-
ducible cytokine genes. The cytokine expression occurs only 
when antigen-binding activates the CAR-T cells [17, 18]. 
Other CAR-T approaches include the dual-receptor CAR-T 
cells, which are activated only in the presence of dual antigen 
tumor cells [19], and bi-epitope CARs [20], which fight anti-
gen escape and loss.

With the increasing potency of CAR-T cells, more caution 
must be taken to ensure their safety. For solid tumors, the 
off-target activity becomes a limiting factor, since the target 
antigens are still expressed on some normal cells, and the 
cytotoxic activity toward these is not desirable. The first po-
tential action is to adjust antibody affinity, thus mitigating 
on-target off-tumor toxicities related to low-level antigen 
expression in the normal tissues. The chimeric antibodies 
with middle or even low affinity to target can have sufficient 
potential to eradicate the antigen-overexpressing malignant 
cells, but not to damage normal tissues with low-level anti-
gen expression [21]. Such situation is possible in case of solid 
tumors, which can even cause death during CAR-T therapy 
[22].

Another approach for reducing off-target activity is to fabri-
cate short-lived CAR-T cells. This can be achieved via mRNA 
delivery with a chimeric construct instead of DNA incor-
poration into the T-cells. In this case, the T-cells express a 
CAR for up to several days at high efficiencies; however, the 
drawback of this approach is rapid loss of the transgenic con-
struct and the T-cell activity associated with it, and a need for 
several dosages to obtain clinically relevant results [23]. This 
approach not only allows temporal control over the CAR-T 
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pharmacokinetics but can also be applied with gene-editing 
tools such as TALEN, disrupting TCR and CD52 expression 
in the CAR-T cells, thus creating off-the-shelf CAR-Ts. In 
addition, this approach can expand the scope of therapy to 
treat hematological tumors. In this context, previous stud-
ies reported that by using mRNA-transduced anti-CD19 
CAR-T cells targeted against the tumor microenvironment, 
promising results were obtained in the treatment of Hodg-
kin’s lymphoma [24]. The transient CAR-T production with 
mRNA delivery can be a potential option for future in vivo 
CAR-T therapy wherein, mRNA-loaded particles can be in-
jected into specific T-cells within the patients [25].

Yet another approach to increase safety is via the on-off con-
trol of CAR-T cells. The most clinically advanced technology 
is the inducible suicide caspase-9 gene based on a modified 
human caspase-9 fused to the human FK506 binding pro-
tein (FKBP). This fusion protein, expressed in the T-cells, 
can form dimers when a chemical inducer of dimeriza-
tion (AP1903 or Rimiducid) is administered to the patient. 
A single dose of the inducer drug causes rapid elimination 
of 85-90% of iC9-transduced T cells [26, 27]. Caspase-9- 
transduced T cells were used in the clinic as a tool to con-
trol graft-versus-host-disease (GVHD) after haploidentical 
stem cell transplantation, and the GVHD-associated symp-
toms could be also quickly eliminated following the caspase 
switch activation [28].

With more than 600 ongoing clinical trials [29], there are 
a lot of features emerging continuously in the CAR-T field, 
similar to the software "add-ons", aimed to solve particular 
tasks within a particular setting (or overcome particular 
difficulties) with a combination of different targets and ap-
proaches to improve safety and efficacy, some of which were 
discussed above. Another important limitation concerns 
the costs and timing of production. Being completely per-
sonalized, the currently approved CAR-T relies solely on the 
patient’s T-cells for the CAR-T production. Therefore, apart 
from difficulties in logistics and lead times for therapy, the 
cost of such therapies becomes a huge burden to the patient 
and acts as a barrier to the widespread use of CAR-T thera-
pies [30].

This issue has been addressed by off-the-shelf CAR-T and 
CAR-NK products in development. There are several ap-
proaches to treat GVHD which is the main challenge for off-
the-shelf CAR–based therapies. One approach to solve this 
problem is to use other cells with the cytotoxic ability and 
not αβ T-cells. The NK cells fit this approach and have been 
used in phase 2 clinical trials. However, such off-the-shelf 
therapy seems to require fourth-generation CAR constructs 
including death switches and expression of stimulatory mol-
ecules to generate stable CAR-NK cell populations [31]. 
Gene-editing methods such as CRISPR/Cas9 and TALENs 
are used to disrupt genes encoding the endogenous TCR as 
well as human leukocyte antigen (HLA), thus creating uni-
versal CAR-T therapy. Apart from deleting human histo-
compatibility loci in CAR-introduced T-lymphocytes, gene 
editing and CRISPR-like technologies can be used to insert 
CAR constructs precisely into particular genome regions, 
instead of just delivering CAR-programming viral plasmids, 
which can improve the survival of modified T-cells [32, 33, 
34]. Yet another promising option is that gene editing allows 

the deletion of T-cell suppressive receptors, thereby render-
ing the T-cells less susceptible to tumor-mediated immuno-
suppression [35].

The efficacy and safety of CAR-T cell therapy still have broad 
space for improvement, since not only increased safety but 
also higher efficacy is required. Notably, disease relapse can 
occur in up to 50% of patients within a year of therapy. Spe-
cific tumor biomarkers are widely used to choose and direct 
therapy with a growing variety of anti-cancer drugs [36]; 
therefore, the same approach is expected to benefit more 
complex CAR-T treatments, introducing the idea of individ-
ualized disease management as well as personalized therapy 
[37]. Safety is the first concern that can be managed with the 
help of biomarkers as cytokine release syndrome (CRS) and 
CAR-related encephalopathy syndrome (CRES) which cause 
up to 60% of life-threatening toxicities [38]. Response rate 
is also an important aspect that can be determined by bi-
omarkers, especially the primary indications: if up to 90% 
response can be seen in ALL, according to a meta-analysis 
by Hou et al. [39], this figure drops to 9% (10-fold lower) in 
solid tumors.

CRS is caused by activation of T-cells after engagement of 
their CAR targets. Activated T-cells release various cytokines 
and chemokines, including interleukin (IL)-6, interferon 
(IFN)-γ, granulocyte-macrophage colony-stimulating factor 
(GM-CSF), and soluble IL-2Rα [40]. These cytokines activate 
monocytes, macrophages, and other immune cells, which in 
turn release inflammatory cytokines. However, only a few bi-
omarkers have been identified as predictors in clinical trials: 
serum levels of IL-6 and IFN-γ in the first 24 h after CAR-T-
cell infusion in B-ALL patients have been reported as robust 
biomarkers of severe CRS and CRES [41]. In NHL patients, 
increased serum IL-8, IL-10, and IL-15 levels, as well as de-
crease of transforming growth factor (TGF)-β could also 
predict severe CRS and potential neurotoxicity [42].

CAR-T efficacy prediction is still a challenging issue [43, 
44]. Hence, there is a need to identify new biomarkers, es-
pecially with growing insights from the new genomic and 
transcriptomic analysis methods powered by next-genera-
tion sequencing, enabling TCR repertoire and lentiviral in-
tegration site analysis that allows for clone evolution of the 
CAR-T cells in the patient and its interaction with immune 
system [45].

We can see from the above discussion that the technical part 
of CAR-T development is open to a huge number of op-
tions and features, which can be combined into an optimal 
product to deliver the best possible combination of safety 
and efficacy for a wide variety of cancers in a personalized 
therapeutic manner. It is also clear that the diversity of com-
binations that is possible with CAR-T cells is huge and grow-
ing, along with the complexity and uncertainty of the result. 
This is similar to the current state of software development; 
thus, the transfer of effective approaches from this field into 
CAR-T’s development may benefit research and clinical de-
velopment.

Area #2 Regulatory
As noted in the Harvard Business Review publication "Em-
bracing Agile" [6], the type of innovation that will favor agile 
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methodology is when "Problems are complex, solutions are 
unknown, and the scope is not clearly defined. Product spec-
ifications may change. Creative breakthroughs and the time 
to market are important. Cross-functional collaboration is 
vital".

The experience of drug regulation was just about the oppo-
site: regulatory agencies and financial reimbursement bodies 
that set bottlenecks for fast drug development processes [46]. 
However, in recent decades, the most influential regulatory 
agencies, such as the FDA and EMA, have made huge steps 
toward flexibility, dialog, and increasing speed for innova-
tions, especially in the field of gene and cell therapies. If we 
look at the history of changes in FDA regulations, the Or-
phan Drug Act, which loosens regulations for drugs aimed 
at conditions affecting less than 200,000 people in the USA 
(and personalized medicines can fit very well in that) was 
followed by the Accelerated Approval program that allows 
approval based on surrogate endpoints (with completion 
of post-approval Phase 4 trials to maintain approval) [47]. 
Next, the Fast Track designation allowed more frequent re-
views with the FDA and expedited rolling reviews, allowing 
tighter contact between the regulator and developer [48]. 
The breakthrough therapy program added on top of it by the 
FDA allows drugs that fall within it to be approved based 
on clinical studies with alternative clinical designs that could 
be smaller in the number of subjects and use surrogate end-
points or biomarkers to determine efficacy [49]. The 21st 
Century Cures Act [50] has driven the FDA to maximize the 
use of these programs and supports the use of biomarkers 
as determinants of therapeutic efficacy rather than clinical 
outcomes alone. And most importantly for Gene and Cell 
therapies this act set a new Regenerative Medicine Advanced 
Therapies (RMAT) designation, that includes cell therapies, 
therapeutic tissue engineering products, human cell, and 
tissue products as well as certain human gene therapies and 
xenogeneic cell products aimed to treat serious disease.

It is important to note that drugs carrying an "orphan drug" 
designation can access the accelerated pathways mentioned 
above, requiring smaller trials (on average 3 times smaller vs 
common diseases), avoiding the need for randomization or 
double-blinding, and obtaining approval based on surrogate 
endpoints rather than stricter mortality or survival clinical 
endpoints.

Similar approaches are used by the European Medicinal 
Agency (EMA) and set in the number of directives [51, 52], 
which defines the special types of products-advanced thera-
py medicinal products. Such ATMPs can also be subject to 
orphan designation, which is different in the EU vs the USA- 
prevalence is not more than 5 in 10,000 [53]. Most of the ac-
tivities and benefits that the developer obtains under ATMP, 
PRIME, and other expedited regimes are based first on ex-
tensive communication and obtaining advice and guidance 
from regulator experts on the development plans and reg-
ulatory strategies, including preclinical and clinical aspects. 
Again, the conditional approval option on the limited data of 
safety and efficacy (Phase II) is also possible.

The expedited reviews of new product development, readi-
ly available for gene and cell therapies, now provide unique 
opportunities for implementing the agile approach and 

increasing the efficiency of development for new therapeu-
tics in this very demanding field. This is especially true when 
combined with therapy personalization, based not only on 
clinical diagnosis but also on specific biomarkers that enable 
particular therapeutic interventions. Since this itself opens 
the orphan pathway to approval, which is more frequently 
used, up to 25% of new approvals got an orphan designation 
[46].

New drugs are not only products to be developed for pa-
tients but are also products to be developed as regulators. 
The fate of the same drug candidate can differ dramatically 
with differences in clinical and pre-clinical data generation 
and presentation, in manufacturing and quality control pro-
cesses and documentation [54], as well as the financial, or-
ganizational, and even behavioral characteristics of patients 
in clinical trials [55]. In this case, the ability to create a set 
of documents and approaches for approval as an "MVP for 
regulator" and test it during a face-to-face discussion in the 
iteration process can provide substantial benefits for the de-
veloper to make things faster and cheaper. Importantly, most 
advanced regulators such as FDA understand the uncertain-
ty in development, which is reflected in recent and impor-
tant for cell and gene therapy products CMC guidance [56] 
that of states about critical quality attributes (CQA). "We fur-
ther acknowledge that understanding and defining product 
characteristics that are relevant to the clinical performance 
of the gene therapy may be challenging during early stages of 
product development, when product safety and quality may 
not be sufficiently understood".

Accelerated approval options (which not only allow approval 
of the drug based on the Phase II data but also requires tight 
communication with the regulator) according to some anal-
ysis may decrease R&D costs by up to 500 M$ and shorten 
the time to market for two years on average [57].

However, accelerated approval or conditioned approval in 
EMA forces developers to follow additional risk mitigation 
strategies, such as risk evaluation and mitigation strategies 
(REMS). The REMS program empowers the FDA to regulate 
post-market activities in exchange for pre-market approv-
al. Under REMS, providers must continue to monitor and 
report patients with side effects. The CAR-T treatment sites 
needed to comply with REMS, approved by the FDA, for 15 
years.

REMS for CAR-T includes a set of requirements before the 
site can start CAR-T treatments (such as having two doses of 
tocilizumab to prevent CRS and neurological toxicities per 
patient, requirements for medical staff training, and a system 
to report adverse effects). Fulfillment of the REMS (FDA) or 
risk management plan (EMA) requirements should be cov-
ered and controlled by the pharmaceutical company in part-
nership with the practicing clinicians. 

Since the regulators understand well that cell and gene thera-
pies are much different even from biologics, they are working 
intensively to create guidelines for this area. Currently, some 
guidelines cover areas from preclinical, manufacturing, clin-
ical development, and follow-up [56, 58-65]. It is important 
to highlight new guidance for devices used in regenerative 
medicine advanced therapies in which CAR-T therapies are 
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commonly included since it clearly defines the requirements 
for auxiliary devices used in the CAR-T production process 
[66].

CAR-T regulatory landscape in Russia 
CAR-T in Russia falls into the category of biomedical cell 
products, which are regulated by the federal law # 180-FZ 
and all linked documents [67]. A full set of regulatory doc-
uments was completed in 2020, and real-life application for 
this law is in the early stage, there are no approved products 
and only one completely certified production site for cell 
therapy. Importantly, this law allows for written and even 
face-to-face consultations directly with experts of the regu-
lator (Federal State Budgetary Institution "SCEEMP"), which 
is an important step to support the development of complex 
cell therapies. 

Area #3. Production 
The next step involved in making the therapy available to the 
patient is production. Since we are transitioning from the 
one-pill-fits-all to the one-pill-for-one patient model, the in-
dustry understands that big plants are not of much use in this 
new reality. CAR-T development not only opens issues that 
are specific to this field, but also provides some solutions to it 
[68]. New models of production start to emerge (see Table 1 
"Cell therapy production. Emerging models", [69-71]). One 
of the most common strategies to produce in-house CAR-T 
cells is small-scale production volume, which is just fit to the 
number of patients in the clinic using cell-modifying equip-
ment such as the CliniMACS Prodigy® system [67], which 
allows for the small-scale process of cell transformation and 
sorting for clinical applications. 

The overall "agile-like" approach we have discussed above is 
used in personalized therapies like CAR-Ts such that the ther-
apies are more effective and shorten the development cyc- 
le. If we can reduce the production duration and bring the 
product closer to the patient, it will bring several benefits to 
the entire system:
1. Benefits to the patient by shortening the duration of ma- 

nufacturing and transportation. Better adjustment of 
therapy options due to faster response if the production 
site is in the clinics, enabling flexibility of regimes and 
targets.

2. The benefit to pharma companies – big investments in 
large production facilities are not needed.

3. The benefit to the regulator-better control of safety. 

Such close-to-patient therapy production opens new possi-
bilities for treatment adjustments, such as biomarker-assis-
tant cell dosage, relapse, and tumor escape treatment with 
CARs aimed at different targets.

Academia in business 
One feature of the agile approach towards product develop-
ment is the non-hierarchical horizontal structure of teams of 
interdisciplinary experts. CAR-T is a product which requires 
tight collaboration between the pharmaceutical industry and 
clinics, that are most frequently vertically oriented; however, 
there are several examples of academia being an active part 
of the business. Some examples are: 

Joint ventures | Startups 
In 2013, the Fred Hutchinson Cancer Research Center (FH-
CRC), Memorial Sloan Kettering Cancer Center (MSKCC), 
and Seattle Children's Research initiated Juno Therapeutics 
company as a result of previous long collaboration in CAR-T 
development, and further started joint ventures with Juno 
Therapeutics for more than four clinical trials [73]. 

Academic institution networks, that unite researchers, de-
velopers, clinical centers, and companies for developing 
new therapy
The BioCanRx network (Canada immunotherapy network) 
is a pan-Canadian network of expertise and infrastructure 
for the development, manufacturing, and clinical testing of 
new immunotherapies. It was established in 2016 to boost in-
frastructure and manufacturing capacity to support bench-
to-bedside research and to ultimately increase the access to 
CAR-T by increasing the number of clinical trials available 
to Canadian patients, as well as to empower innovations in 
the engineered T-cell area. It survived government financing 
cuts and delivered two CAR-T candidates in several clinical 
trials, including closed-cycle point-of-care CAR-T devices 
[74].

Multi-country consortia between the academic institu-
tions and small companies allow bypassing big pharma-
ceutical companies or large investments in CAR-T deve- 
lopment
The EURE-CART Alliance involved six academic centers 
from five countries, and three small and one medium-sized 
enterprise to conduct clinical trials of CAR-T candidates and 
to clinically develop CAR-T platforms. In 2020, the alliance 
started the first clinical trial of a CAR-T, CD44v6 candidate 
[75].

Crowdfunding consortia
The rare disease consortia started in 2008, uniting patients, 
charity, and academic research to develop a treatment for 
the Rett syndrome. In total, more than 60 M$ were col-
lected to finance research or attract research teams in gene 
therapy and cell therapy dedicated towards curing this syn-
drome. Multiple collaborations of scientists covered different 
steps in therapy development. Enabling collaboration with 
AveXis made this company focus on Rett syndrome, develop 
AVXS-201 gene replacement therapy up to the preclinical 
phase, and even managed to keep it in the Novartis pipeline 
with a fixed date for IND application in 2021 [76]. The same 
community advanced other gene therapy candidates TSHA-
102 with Taysha Therapeutics [77]. 

As we can see from these examples, forming [6] consortia 
can indeed deliver therapeutic products in this very com-
plex and challenging field of gene and cell therapy due to 
advancements in collaboration and working in cross-func-
tional teams, even though it lacks the power and experience 
of big pharmaceutical companies. However, this can be ad-
dressed by skillful application of agile processes technology 
giants. 

Gene and cell technologies and new technology giants
An important point for the future of the healthcare sector, 
which was boosted in recent years, is the increased support 
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from regulators, such as the US FDA, emerging and more 
effective technologies, decreasing time to market for them. 
Big data, genome-based personalization of treatments, and 
gene-editing are all included in the new focus of attention of 
regulators, which can possibly reduce the costs of treatment 
and drugs, and overall decrease the healthcare expenses [78, 
79].

Since IT-born agile ideology can be applied to the develop-
ment of personal therapeutics, they are sweet points of entry 
into the pharmaceutical market for tech giants who are ex-
perts in this development methodology. 

One interesting example is the story of Jeff Bezos, Amazon, 
and Juno Therapeutics, which initiated a possible entry of 
Amazon into the CAR-T business with 7 years of approval, 
and possible changes in the US healthcare industry [80]. 

• 2013 – Juno Therapeutics spin-off from the Fred Hutchin-
son Cancer Research Center.
• 2014 – Bezos invests Juno 20M$ in 140M$ round.
• 2014 – Bezos family gifted the Fred Hutchinson Cancer Re-
search Center 30M$ to create 1 in the USA clinic for immu-
notherapy treatment (Bezos Family immunotherapy clinic).
• 2018 – Celgene Juno was sold to Celgene, later to BMS. 
• 2018 – Bezos (Amazon) enter the US drug market.
• 2019 – Juno ex-executives started company Sana, dedicat-
ed to the development of cell-based treatments ("ultimate 
next-gen cell engineering company with gene therapy and 
cell therapy").
• 2019 – Bezos (Amazon) enter the telemedicine and medi-
cal insurance markets.
• 2020 – Bezos and other VC invest 700M$ in Sana. 
• 2020 – Seattle Cancer Care Alliance, including Bezos Fam-
ily immunotherapy clinic, hosts 33 clinical trials of immu-
notherapies. 
• 02.2021 – Approval of Juno CAR-T JCAR017 (BMS’ Liso-cel).

One interesting story to tell is Jeff Bezos's investments in the 
gene and cell therapies company, Juno back in 2014. From 
that time, Juno went through a series of M&As, starting from 
$6 billion ended up with $67 billion to BMS. Last year, Bezos 
again invested in the same Juno team, now gathered under 
the name Sana, to develop next-generation gene and cell 
therapies [81]. During these times, Amazon entered the drug 
delivery and medical insurance markets [82]. Some might 
infer that it was just smart investments, and it can be seen 
that Amazon now understands and is building a technolo-
gy-oriented healthcare infrastructure, opening the existing 
bottlenecks for new, high-tech, and more efficient health-
care solutions. When the technology giants enter the field 
of healthcare, the market is destined to change dramatically.

Conclusion
When we look at the gene and cellular therapies, and, in 
particular, the CAR-T therapies as its most developed and 
effective segment, it vividly shows general approaches and 
challenges of this field, as well as features that are particular 
to the personal therapeutics. We can see that on the techno-
logical side, despite the common CAR-T platform, a variety 

of diseases and corresponding molecular targets, combined 
with the particularities of patient population groups, will 
require a diverse set of properties for such drugs, possibly 
with some features of opposite functions. In turn, to make 
the most of such flexible and programmable therapeutic 
platforms as CAR-T, an agile, iteration-based approach of 
product development can be used, and in fact, has already 
been used to bring the current flagship therapeutics like 
KYMRIAH to the market. Moreover, the current regulation 
for the cell- and gene-based therapeutics, new production 
technologies, methods of research, development, and clin-
ical collaboration for such products can empower the agile 
approach, decreasing the costs and time to market such ther-
apies, as well as bringing in new players from the IT and high 
technology industries to the pharmaceutical market.
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Наши уроки внедрения CAR-T клеток: разработка, 
законодательная и клиническая практика 

Михаил Ю. Самсонов 1, Андрей М. Ломоносов 2

1 ООО Р-Фарм; Отдел фармакологии, институт фармации, Первый Московский государственный медицинский 
университет им. И. Сеченова, Москва, Россия
2 Рабочая группа Хелснет Национальной технологической инициативы, Москва, Россия

Резюме
За последнее десятилетие достигнуты значительные 
успехи в медицинской науке и прикладных техно-
логиях. Клеточная и генная терапия позволили до-
биться выдающихся результатов этих разработок 
в течение очень коротких сроков. С начала первой 
волны заболеваемости, пандемия COVID-19 соз-
дала препятствия для пациентов в плане доступа к 
диагностике и лечению в госпитальных условиях. 
С другой стороны, этот годичный период был оз-
наменован беспрецедентными технологическими 
достижениями, особенно – в аспекте терапии, осно-
ванной на применении мРНК и ее законодательного 
регулирования. В настоящей обзорной статье обра-
щается особое внимание на CAR-T-клетки в каче-
стве клинической модели со всеми ключевыми атри-
бутами их внедрения в рамках сложных цепочек – от 
первичных научных исследований к многообразию 
моделей и тенденций их применения в клинической 
практике.

Ключевые слова
Клеточная и генная терапия, CAR-T–клеточная те-
рапия, планирование управлением рисками, гибкое 
развитие.
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