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Summary
Myelodysplastic syndromes (MDS) comprise a group 
(continuum) of clonal hematopoietic diseases associat-
ed with high risk of transformation into acute myeloid 
leukemia (AML) and unfavorable prognosis. Compared 
to the other hematologic malignant diseases, there was 
only a modest improvement in survival of MDS patients 
over the last years. Allogeneic stem cell transplantation 
remains the only curative option for these patients, how-
ever, most of them are not candidates for transplanta-
tion. This review focuses on the long-term outcomes of 
existing therapies and novel agents that are currently 

tested at different stages of clinical trials. These include 
inhibitors of TGFβ, various kinase inhibitors, and im-
mune checkpoint inhibitors. Administration of new 
therapies in the patients with different pathogenetic 
MDS variants is discussed.
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Introduction
Myelodysplastic syndrome (MDS) represents a heteroge-
nous group of clonal diseases caused by alterations in he-
matopoietic stem cells due to hereditary predisposal, along 
with variable somatic gene mutations, and/or abnormal epi-
genetic regulation, including those induced by altered mi-
croenvironment and disrupted immune surveillance [1].

Pre-leukemic features of MDS were explored since early 80’s 
based on atypical in vitro growth of hematopoietic precursor 
cells from MDS patients [2-4]. Further on, some newer lab-
oratory techniques, like flow cytometry and next-generation 
sequencing (NGS), allowed better insight into the distinct 
pathological events underlying MDS development. Over 
last decades, with increased lifespan, a number of periph-
eral blood cytopenias were found to precede clinical MDS, 

especially, in the patients >65 years old, i.e., ICUS (idiopathic 
cytopenia of undetermined significance); CHIP (Clonal he-
matopoiesis of indeterminate potential); CCUS (clonal cy-
topenia of undetermined significance). Such conditions are 
determined by the age-dependent accumulation of somatic 
mutations which may play a role in subsequent MDS deve- 
lopment.

These disorders may be transformed to hematological ma-
lignancy at a frequency of ca. 0.5-1% per year [5-7]. The ma-
jority of associated gene mutations (e.g., DNMT3A, TET2, 
ASXL1, TP53, and JAK2) affect RNA splicing or epigenet-
ic regulation. However, patients with long-term cytopenias 
and somatic mutations do not always exhibit morphological 
changes of blood cells corresponding to MDS criteria. More-
over, only distinct cytogenetic aberrations (del5q) and point 
mutations (SF3B1) are considered specific for MDS, where-
as other mutations are relatively non-specific and could be 
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revealed in other pathologies, e.g., in the myeloproliferative 
disorders [8] or aplastic anemia (Fig. 1). In the latter case, 
MDS frequency was demonstrated to be sufficiently higher 
than in general population which is determined by the mu-
tational profile [9].

Occurrence of additional potentially pathogenic mutations 
is associated with increased MDS risk [10]. At diagnosis, two 
or more marker somatic mutations can be determined in 
most MDS patients [11]. In parallel to additional mutagen-
esis and clonal evolution of hematopoietic cells, the clinical 
manifestations undergo several stages, from a cytopenia 
of undetermined significance to MDS, and, in some cases, 
to leukemic transformation into acute myeloid leukemia 
(AML) [12]. Due to this complex pathogenesis effective 
target therapy is still not available for this group of diseases 
despite better awareness of MDS development mechanisms.

Hematopoietic cell transplantation 
and current therapeutic options
At the present time, allogeneic HSCT is the only curative 
treatment method for MDS. However, patients with MDS 
still remain the most complicated candidates for allo-HSCT, 
due to a number of additional unfavorable factors, includ-
ing advanced age of the patients. MDS is more common in 
the patients over 65 years old, which determines a sufficient 
number of co-morbidities. In addition, preceding prolonged 
therapy is associated with significant number of blood trans-
fusions with high frequency of clinical and laboratory signs 

Figure 1. Interactions and characteristic features of clonal hematopoiesis of indetermined potential (CHIP), idiopathic 
cytopenia of undetermined significance (ICUS), clonal cytopenia of undetermined significance (CCUS), aplastic anemia 
(АА), and myelodysplastic syndrome (MDS). Adapted from Young N., 2002 [13]

of iron overload, as well as immunization due to these trans-
fusions. In clinical practice, reduced-intensity conditioning 
regimens are often applied, taking into account somatic state 
of patients [14]. However, hematological remission is not 
achieved at the time of allo-HSCT in the majority of patients. 

Along with gene mutations in stem cells, a special feature of 
MDS pathogenesis are certain defects of hematopoietic mi-
croenvironment, which alter functioning of hematopoietic 
niches [15]. These alterations contribute to higher incidence 
of graft failure, including primary graft failure and severe 
poor graft function after engraftment, as well as increased 
probability of early relapse. Long cytopenias after allo-HSCT 
is associated with higher risk of infectious complications, 
which are the main cause of posttransplant mortality in 
MDS patients. All issues described above determine high-
er post-transplant mortality in MDS compared to the other 
groups of HSCT recipients [16, 17]. Moreover, a significant 
proportion of patients is lacking HLA-compatible related or 
unrelated donor, and efficiency of haploidentical HSCT in 
MDS is still not supported by large studies [18]. According 
to the current European Blood and Marrow Transplantation 
(EBMT) guidelines, allo-HSCT from haploidentical donor is 
a clinical option and could be considered only after thorough 
evaluation of potential risks and benefits associated with this 
procedure.

Nonetheless, allo-HSCT facilitates cure in 30-40% of MDS 
patients. Several studies are ongoing aiming to improve allo- 
HSCT outcomes with posttransplant relapse preventive 
strategies [19, 20].
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Due to clinical heterogeneity of MDS and risks associated 
with HSCT procedure, the strategy of treatment is largely 
personalized, dependent on the prognostic group, according 
to national and international recommendations [21, 22].

In low- and very low-risk patients with predominant clinical 
signs of anemia, the main therapeutic goal is to reduce trans-
fusion dependence and to prevent organ damage caused 
by iron overload. Erythropoiesis-stimulating agents (ESA) 
could be administered, which, however, are clinically effec-
tive in about 1/3 of the patients, according to the multicenter 
studies [23]. The responders are predominantly those with 
initially low erythropoietin levels (<200 ng/ml) and the me-
dian duration of clinical response is about 1 year. Some stud-
ies suggest the possibility of decreased transfusion require-
ments with chelator therapy [24]. However, a randomized 
study did not show any improvement of erythropoietic re-
sponse compared to ESA monotherapy [25].

In low-risk MDS cases with 5q- chromosomal aberration, 
immunomodulating therapy may result into cytogenetic re-
mission in about 50% of the patients, with 2/3 of cases be-
coming transfusion-independent [26, 27]. In other low-risk 
MDS variants, there are only several single-center studies, 
where transfusion independence was achieved after short 
courses of hypomethylating agents (HMA) [28], and im-
munosuppressive treatment (IST), including cyclosporine 
A and anti-thymocyte globulin [29]. The median duration 
of clinical response using these therapies was, respectively, 
16 and 18 months. Only small proportion of MDS patients 
has long-term remissions, either with HMA or IST proto-
cols. However Kokhno A. et al. have shown that IST proved 
to be more effective in the patients with hypocellular bone 
marrow, or non-uniform cellularity with hypoplastic/aplas-
tic areas, in absence of poor and very poor karyotype ab-
normalities according to IPSS-R scale, or without 7q-, i(17q) 
aberration [30].

In high-risk MDS, low-dose cytosine arabinoside (LDAC) 
treatment was a long-standing approach to therapy in my-
eloid dysplasia since mid-80’s [31]. Median survival time 
in clinical studies was ca. 8 months for these cohorts, with 
maximal lifespan of 2-3 years and frequency of clinical 

responses of 15 to 30%. However, some studies did not show 
any differences in survival rates between LDAC protocol and 
best supporting therapy [32-34]. At the present time, HMA 
became another standard of therapy in high-risk MDS. In 
registration randomized studies, decitabine and 5-azaciti-
dine were associated with prolonged median survival by 2.7 
and 10 months, respectively, compared with best available 
treatment [35, 36]. Nevertheless, large clinical studies, e.g., 
Surveillance, Epidemiology, and End Result‐Medicare da-
tabase embracing 532 MDS high-risk patients, have shown 
somewhat higher results, i.e., median overall survival (OS) 
of, respectively, 11 and 12 months for decitabine and 5-azac-
itidine [37]. Despite MDS complete remissions are rare in 
HMA-treated MDS patients, these drugs enable temporary 
control of the disease with good quality of life and low he-
matological toxicity. Moreover, in the context of allo-HSCT, 
HMA may be effective in the pre-transplant period, by im-
proving the patient’s state during search and activation of 
potential donors without increase of hematological toxicity 
[38].

There also are some studies on improvement of platelet 
counts with supplementary treatment with Eltrombopag, 
however, without evidence of higher response rate [39, 40]. 

Despite improvements with HMA introduction, recent 
studies in fundamental biology and pathogenesis of MDS 
revealed potential opportunities for studying novel treat-
ments able to modify specific signaling and metabolic path-
ways, as well as hematopoietic and immune microenviron-
ment.

Transforming growth factor-beta 
(TGFβ) antagonists  
TGFβ antagonists, e.g. luspatercept, proved to be potential-
ly effective in low-risk MDS with transfusion dependence, 
given the key role of TGFβ ligands in hematopoiesis. This 
drug represents a recombinant protein able to bind the TGFβ 
superfamily ligands, thus blocking SMAD2 and SMAD3 sig-
naling pathways, regulating differentiation and maturation 
of erythroid precursors [41, 42]. These pathways play an 

Figure 2. Hematopoietic effects of luspatercept (A); Molecular mechanisms of luspatercept action (B)
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important role in MDS pathogenesis by inhibition of SMAD7 
and SKI expression [43, 44]. Luspatercept binds TGFβ lig-
ands, that abrogating negative erythropoiesis regulation, ac-
celerating events during late RBC maturation, unlike eryth-
ropoietin which regulates early stages of erythropoiesis [45], 
as shown in Fig. 2.

A general reduction in transfusion dependence was demon-
strated in phase II clinical trial PACE-MDS with 29% of 
cases being with high transfusion requirements. Independ-
ence of blood transfusions was achieved in 36% of the cases. 
In particular, clinical responses were more often observed 
among patients with marrow ring sideroblasts and SF3B1 
mutation [46].

In the phase 3 MEDALIST study, 37.9% of low-risk MDS 
patients became transfusion-independent in the treat-
ment with luspatercept compared to 13.2% in the placebo 
group. According to the results of longitudinal observation 
(MEDALIST study), independence on red blood cell (RBC) 
transfusions maintained for at least 8 weeks at any period of 
treatment, and it was more frequent among patients treat-
ed with luspatercept (47.7%) than in placebo group (15.8%). 
Approximately 1 year after initiation of luspatercept, 31.4% 
did not require RBC transfusions, against 0% in placebo 
group. Among luspatercept-treated patients, the overall 
transfusion-free period and clinical improvement was ob-
served, independent on previous transfusion burden. Trans-
fusion independence persisted in 12 cases (7.8%) out of 153 
patients who received luspatercept after 48 weeks of follow 
up. Some adverse effects associated with luspatercept admin-
istration rarely caused early discontinuation of therapy, and 
their occurrence decreased over time. Frequency of progres-
sion to AML (5%) was similar for luspatercept-treated pa-
tients and placebo group [47].

Figure 3. Main effects of roxadustat upon different organs and cells
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Another randomized phase III study COMMANDS is on-
going, where a comparison is made between luspatercept 
and erythropoietin α, the current standard of therapy [48]. 
The results of this study may influence the subsequent treat-
ment standards in low-risk MDS patients. Similarly, some 
preclinical and clinical studies of kinase inhibitors involved 
into the TGFβ signal pathway are currently underway.

Galunisertib, an inhibitor of ALK5 kinase related to the sig-
nal transduction for TGFβ receptor activation, was studied 
in phase 2 clinical trials in low- and intermediate risk MDS, 
according to the IWG 2000 criteria. In 43.9% of patients, 
erythroid response was observed, hematological improve-
ment was registered in 24.4% of cases, along with reduction 
of weakness in 44% of the patients. The results may justi-
fy its application in transfusion-dependent MDS patients 
who are non-responding to ESA [49]. Thus, a new class of 
TGFβ-directed drugs can be registered in the near future. 
The ongoing studies will show if these drugs are applicable 
only in MDS with ring sideroblasts, or they could be extend-
ed to other subgroups of low-risk MDS patients.

Another agent for low-risk MDS in late clinical trials is Rox-
adustat. It is a protein factor regulating HIF-1α (hypoxia-in-
ducible factor-α) [50]. The drug influences erythropoietin 
production and iron uptake from macrophages, enhances 
iron metabolism, stabilizes blood HIF levels and prevents 
its degradation, thus promoting erythropoiesis [51]. Inter-
im results of a multicenter study involved 24 patients with 
low-risk MDS and demonstrated a decrease of transfusion 
dependence by 50% [52]. Roxadustat inhibits HIF-α decay 
followed by its dimerization with HIF-β and nuclear trans-
location to cellular nucleus where the response to hypoxia is 
mediated at the transcriptional level (Fig. 3).
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Immune checkpoint inhibitors
The inhibitors of immune checkpoints (ICP) are highly ef-
fective in a treatment of some solid tumors. Their versatile 
effects are based on reactivation of exhausted immune cells 
via blocking appropriate inhibitory signal, leading to a re-
covery of antitumor immunity. Nevertheless, the charac-
teristics and expression of different ligands of ICP strongly 
depends on the type of malignancy. Pronounced clinical re-
sponse to ICP is prominent in tumors with high neo-antigen 
contents, or amplification of genes encoding ICP ligands. 
Highest sensitivity to ICP treatment was demonstrated for 
Hodgkin’s lymphoma, melanoma, cancers of urinary tract, 
lung cancer, head and neck malignancies, solid cancers with 
microsatellite instability [53]. There are usually only a small 
number of somatic mutations in MDS patients despite var-
iable mutation profile [11], however hematopoietic cells in 
MDS exhibit high expression of the ICP ligands which may 
be increased during HMA therapy [54, 55].

Nonetheless, the ICP monotherapy was not associated with 
significant response in clinical trials [56]. The failure of 
nivolumab or ipilimumab monotherapy may be due to simul-
taneous expression of several inhibitors of immune response 
as confirmed by experimental data, including our own re-
sults [57]. Garcia-Manero G. et al. have shown the overall 
response rate (69%) to 5-azacitidine+nivolumab treatment 
in MDS, including complete remission in 2 patients. Higher 
response rate in this combined treatment schedule correlates 
with induction of neoantigen expression in tumor cells un-
der HMA, thus enhancing the T cell immune response.

Failure of ICP therapy in MDS could be also determined 
by immunosuppressive effects in the hematopoietic niches. 
As possible mechanisms, one may consider high indoleam-
ine-pyrrole 2,3-dioxygenase (IDO) expression in cellular 
microenvironment, T cell differentiation towards regulatory 
T cells, low interferon-α expression by T cells, induction of 

T cell apoptosis due to activation of CD33-S100A9 signal-
ing, increased levels of myeloid suppressor cells [58-68]. In 
future, ICP-based treatment seems to enter the standards 
of MDS therapy, however, not as monotherapy, but as com-
bined therapeutic schedules, e.g., with PD-1, CTLA4 and 
TIM3 inhibitors [69]. Clinical trials with anti-TIM3 mon-
oclonal antibodies are underway now. A multicenter study 
has shown that combined treatment with MBG453В, an 
anti-TIM3 antibody, and decitabine resulted into hema-
tological or molecular remission in 50% of high-risk MDS 
patients [70].

Macrophage ICPs represent a fundamentally new class of 
such regulatory molecules. CD47, being expressed on mac-
rophages, is a key molecule able to inhibit their response, and 
its interaction with SIRPα ligand protein causes suppression 
of phagocytic function. This effect is called a blocking "don't 
eat me" signal of CD47-SIRPα. This signal pathway is active 
during interactions between hematopoietic cells and mac-
rophages, also serving as a tolerance mechanism in hemato-
poietic malignancies [71]. Magrolimab, or 5F9 antibody, is 
a humanized monoclonal antibody (MAb) which blocks 
CD47 and activates SIRPα pathway, promotes phagocyto-
sis of tumor cells. Combined application of this drug with 
5-azacitidine in preclinical model of acute myeloid leukemia 
(AML) has shown high survival rates in laboratory animals 
[72]. During the Phase 1 clinical trial, 5-azacitidine and 
Magrolimab was administered to 35 high-risk MDS patients. 
The response was evaluated in 24 patients, with hematolog-
ical response in 92% and complete remission in 50% of the 
cases. Further observations are required to assess duration of 
the responses [73].

Distinct effects of the CD47-blocking antibodies are con-
sidered, as follows: (a) under normal conditions, both 
healthy and malignant cells are avoiding phagocytosis by 
CD47 expression. CD47 is overexpressed by cancer cells for 
protection from eat me/prophagocyte signals. (b) After the 

Figure 4. Possible effects of CD47-blocking antibodies upon immune cells
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Mab-induced CD47 blockage, the malignant cells are phago-
cytized, thus causing exposure of the eat me signal. By con-
trast, normal cells remain intact due to absent expression of 
prophagocytic signals.

Inhibitors of bcl2, hedgehog, IDH 
and other molecular targets
Over last years, a significant role of bcl2 in AML progression 
and drug resistance was elucidated. Venetoclax, a specific 
bcl2 inhibitor, was shown to increase the rates of complete 
remission in combination with LDAC or HMA [74, 75]. 
However, the results observed in AML cannot be blindly ex-
tended to MDS. BCL2 inhibition in an MDS models leads to 
suppression of apoptosis in hematopoietic cells and transi-
tion to the resting phase of a cell cycle. As a result a reduced 
DNA damage of erythropoietic precursors was observed. 
However, some doubts exist since apoptosis blockage may 
promote faster transition to AML [76]. 

Overall response to venetoclax was 21% in a group of chemo-
therapy-refractory AML and MDS patients [77]. Clinical 
studies are ongoing with early venetoclax and HMA admin-
istration in MDS. So far only the results of non-randomized 
studies are published demonstrating promising overall and 
complete remission rates (59% and 14%, respectively) even 
in HMA-exposed patients [78].

Glasdegib, another inhibitor of signaling pathways, was reg-
istered in 2019 for therapy of AML and high-risk MDS in 
combination with chemotherapy. The drug inhibits Hedge-
hog (Hh) pathway previously described as an embryogenesis 
regulator, since Hh proteins are involved in cell and tissue 
differentiation. Like other intracellular signaling systems, the 
Hh pathway plays an important role in cell cycle regulation 
of malignant cells and is involved into the mechanisms of 
chemotherapy resistance [79].

In a Phase I study, 31% of AML and high-risk MDS patients 
have achieved complete remission during the glasdegib ther-
apy combined with LDAC and decitabine [80]. Complete 
remission was achieved in 46% of the patients with similar 
disorders in another study using glasdegib combined with 
systemic 7+3 chemotherapy [81]. In a randomized study 
comparing glasdegib plus LDAC against LDAC a 3-month 
increase in OS was demonstrated, along with long-term 
stabilization of the disease in some patients. The rates of re-
sponse to glasdegib monotherapy in refractory MDS com-
prise only 6% [82]. Chaudhry et al. noted that therapeutic 
activity of glasdegib requires expression of GLI3 suppressor 
gene which may be hypermethylated in MDS and AML. De-
termination of GLI3 expression may serve as predictor of 
response to glasdegib treatment [83]. Despite relatively low 
efficiency, glasdegib is well tolerated, thus allowing to sug-
gest it as a component of combined therapy in MDS.

About 5% of MDS cases are associated with IDH1 and IDH2 
gene mutations. The mutated IDH variants are associated 
with excessive production of R2-hydroxyglutarate which 
causes functional insufficiency of TET2 gene [84, 85]. Pres-
ently, two IDH inhibitors for oral administration are under 
clinical trials, enasidenib, and ivosidenib (respectively for 

IDH2 and IDH1 inhibition). The Phase II study in AML and 
high-risk MDS patients, enasidenib therapy was associated 
with response in 53% of the patients including complete re-
mission in 7% [86]. There are no preliminary results on ivo-
sidenib in MDS at the present moment. However, in elderly 
AML ivosidenib induced complete remission, including one 
with partial hematologic recovery, in 42.4% of patients and 
median duration of remission was not reached with 2-year 
follow up [87].

Rigosertib is another clinically tested inhibitor of signal 
pathways which is able to suppress several kinases, e.g., Akt, 
PI3K. A clinical study in MDS patients has demonstrat-
ed reduction of blastosis [88]. However, Phase III study in 
HMA-resistant patients did not show any differences in sur-
vival between Rigosertib treatment and best available thera-
py [89]. At present, Rigosertib is tested in combination with 
5-azacitidine [90].

A small group of MDS patients exhibits FLT3 mutation [11]. 
These patients are prone to rapid transformation to AML, 
thus precluding data accumulation on clinical efficiency of 
FLT3 inhibitors in this MDS variant. Nevertheless, the MDS 
experience shows that addition of Midostaurin to chemo-
therapy is associated with 8% increase in relapse-free surviv-
al [91]. The response rate in combined therapy with 5-azac-
itidine was 26% [92]. Meanwhile, the second-generation 
FLT3 inhibitors (Gilteritinib and Quizartinib) demonstrate 
more optimistic results [93, 94], thus creating the basis for 
addition of these agents to standard therapy in MDS patients 
with FLT3 mutations.

Summarizing the overview of developing targeted thera-
pies, it is important to mention that few of them induce high 
complete remission rate and these complete remissions are 
not durable in the high proportion of the patients. When 
keeping in mind the complex pathogenesis of this disease, 
it is clear that complex approaches to therapy are required. 
The successful examples of other hematological diseases 
give us hope for long-term improvement of survival in MDS 
(Fig. 5).

Allogeneic HSCT as a platform for 
immune therapy in MDS patients 
Along with development of novel therapeutic molecules, 
some feasible options of cellular therapy are under investi-
gation in MDS [95]. At the moment, allo-HSCT is the only 
cellular therapy in MDS which is widely used in clinical 
practice. However, allo-HSCT is a high-risk procedure with 
potentially severe complications that may cause sufficiently 
decreased quality of life and shorter survival of the patients. 
This issue is especially important due to advanced age of 
most MDS patients, thus increasing risk for dismal outcome.

To evaluate the impact of allo-HSCT on survival in MDS 
we compared the survival of two contemporary cohorts of 
patients treated at RM Gorbacheva Research Institute. The 
first cohort agreed to allograft procedure while the second 
refused to undergo allo-HSCT and was treated with avail-
able therapies. Although the groups were not well matched, 
however represent the real life clinical practice at large HSCT 
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Figure 5. Potential drug combinations in personalized therapy of high-risk MDS

center. The comparison of these two groups revealed that 
two-year OS in MDS patients without allo-HSCT was 36.7% 
(n=68), while it was 69.1% (n=83) among the patients after 
HSCT (p<0.05) (Fig. 6A). In allo-HSCT group, the 2-year OS 
was comparable in IPPS-R intermediate-2 versus high-risk 
groups (n=62), and intermediate-1 versus low-risk groups 
(n=21, 68.2% vs 71.4%, respectively). Two-year overall sur-
vival was lower in similar patient groups without allo-HSCT: 

Figure 6. Two-year overall survival of MDS patients depending on allo-HSCT performed (A). The two-year overall 
survival of MDS patients depending on allo-HSCT performed and IPSS risk group (B) 
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31.2% (n=43) and 47% (n=25, p<0.05), respectively (Fig. 
6B). The survival rates following HSCT depended on the 
following items: disease status, graft composition, infectious 
complications, acute GvHD grade I-II [16]. Interestingly, the 
evaluation of all existing MDS prognostic scales in our MDS 
allo-HSCT group did not exert any significant effects on sur-
vival after allo-HSCT. This observation highlights a neces-
sity to validate developing scales in the center- or country- 
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stratified manner. Hence, it is clear that the risk-adapted 
strategies in MDS patients are of extreme importance.

So far, it is unclear how the role of allo-HSCT in MDS will 
change. It can follow the track of chronic lymphocytic leu-
kemia [96] and Hodgkin’s lymphoma [97] where effective 
bridging before allo-HSCT brought the results of allo-HSCT 
in refractory disease close to the results of primary treatment 
in these malignancies. In this situation, allo-HSCT will be 
more broadly used in MDS. On the other hand, combination 
therapies can bring durable remissions to this difficult pop-
ulation of patients. In this case allo-HSCT will be brought 
from first line to second or subsequent lines of therapy like 
it happened with chronic myeloid leukemia [98]. Given the 
preliminary favorable results of allo-HSCT in MDS after 
therapy with ICPs [99], it is likely that at least the first sce-
nario with effective bridging therapies will be implemented 
in the near future.

Conclusion
With respect to recent findings and genetic studies made 
by means of NGS techniques, some radical changes are ex-
pected in MDS therapies. The drug selection will be based 
on evaluation of mutational profile, expression of check-
point molecules and methylation profile. The results of these 
studies will determine a combination of target agents, ICP 
inhibitors and hypomethylating agents. It is also clear that 
allo-HSCT will remain in MDS clinical practice, however its 
place in a sequence of therapies will be rapidly changing.
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Новые опции лечения пациентов 
с миелодиспластическим синдромом: 
обзор литературы и результаты одноцентрового 
исследования 

Елена В. Морозова, Николай Ю. Цветков, Ирина О. Туртанова, Иван С. Моисеев
НИИ детской онкологии, гематологии и трансплантологии им. Р. М. Горбачевой, Первый Санкт-Петербургский 
государственный медицинский университет им. акад. И. П. Павлова, Санкт-Петербург, Россия 

Резюме
Миелодиспластический синдром (МДС) – это гете-
рогенная группа клональных заболеваний, в осно-
ве которой находится поражение гемопоэтической 
стволовой клетки, как следствие наследственной 
предрасположенности, а также соматических мута-
ций различных генов и/или эпигенетической регуля-
ции, в том числе индуцированных нарушением ми-
кроокружения и нарушениями в иммунной системе 
противоопухолевого надзора.

В обзоре освещаются долгосрочные результаты су-
ществующих методов лечения МДС, а также эффек-
тивность новых препаратов, находящихся на раз-
личных стадиях клинических испытаний, включая 

ингибиторы сигнальных путей, ингибиторы кон-
трольных точек, антагонисты трансформирующего 
ростового фактора бета. Характеризуется взаимо- 
связь новых методов терапии с патогенетическими 
основами МДС.

Ключевые слова
Миелодиспластический синдром, терапия, ингиби-
торы контрольных точек, луспатерцепт, гласдегиб, 
венетоклакс, IDH ингибиторы.
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