ISSN 1866-8836
Клеточная терапия и трансплантация
Изменить отображение страницы на: только анонсы
array(4) { [0]=> array(49) { ["IBLOCK_SECTION_ID"]=> string(2) "37" ["~IBLOCK_SECTION_ID"]=> string(2) "37" ["ID"]=> string(3) "901" ["~ID"]=> string(3) "901" ["IBLOCK_ID"]=> string(1) "2" ["~IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["~NAME"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ACTIVE_FROM"]=> NULL ["~ACTIVE_FROM"]=> NULL ["TIMESTAMP_X"]=> string(19) "16.06.2017 15:15:36" ["~TIMESTAMP_X"]=> string(19) "16.06.2017 15:15:36" ["DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post/" ["~DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post/" ["LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["~LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["DETAIL_TEXT"]=> string(27192) "

The first blood cells are known to emerge from the so-called blood islands, i.e., irregularly shaped aggregates of peripheral mesenchymal mesoblasts, forming a network of cells in the area opaca. The peripheral cells of the blood islands flatten out, becoming endothelial cells, whereas the inner cells round up, becoming the primary blood cells that are released into the liquid blood plasma. I have now found that these primitive blood cells (which is what I call them), contrary to what would be commonly expected, are not erythroblasts but completely undifferentiated elements with a round bright nucleus and narrow basophilic cytoplasm. These are neither red nor white blood corpuscles. They could be considered white blood corpuscles since they occasionally, especially in the chicken, appear ameboid, and seem very similar to large lymphocytes. They proliferate extensively, although the increasing numbers during the early stages may in part due to the detachment of endothelial cells in the primitive vessels.

After some time, one observes how these primitive blood cells differentiate into two kinds of cells. One type – which makes up the majority – produces hemoglobin in their cytoplasm, and thus become the so-called primitive erythroblasts. These are large and rapidly proliferating cells that, ultimately, grow to rather hemoglobin-rich cells with relatively small nuclei. They serve the organism for a long period of time, but die out gradually and are replaced by the definitive erythroblasts and erythrocytes.

Another fraction of the primitive blood cells remains hemoglobin-free. These cells now possess a large bright nucleus with nucleoli, and a thin, ameboid, strongly basophilic rim of cytoplasm. In histological terms, they resemble large lymphocytes. These are the first embryonic leukocytes that first appear as lymphocytes.

In what follows, we will see how these intravascular lymphocytes become the starting point of erythropoiesis in the area vasculosa. Through "heteroplastic proliferation" (differentiation) they produce secondary erythroblasts; first to appear are megaloblasts that are variable in size and have bright nuclei; later generations of these cells increasingly resemble the normoblasts, and, finally within the vessels of area vasculosa, a mixed population arises composed of primitive erythroblasts that are rich in hemoglobin, basophilic lymphocytes, and large numbers of intensely proliferating megaloblasts and normoblasts growing in clumps.

However, despite the fact that these lymphocytes produce erythroblasts, they should not be considered erythroblasts themselves; as, in addition to the production of hemoglobin-containing cells, they also give rise to megakaryocytes and diverse other elements in the yolk sack, which have nothing to do with the red blood corpuscles.

Such secondary erythroblasts are quite distinct to the primitive erythroblasts, differing from them by their smaller size and, in contrast to normoblasts, by their smaller and darker nucleus. Ultimately, this nucleus becomes pyknotic and leaves the cell in a degenerative state.

Here, I avoid consciously the issue of erythroblast enucleation, since the current discussions do not correspond to the factual material at hand. In my opinion, all known facts speak in favor and not against nucleus expulsion, whereas no direct proof can be presented for its intra-cellular disappearance – at least in normal hematopoiesis. Although pale shadows of nuclei are often visible, as for example in hemoglobin-rich primitive erythroblasts, this is but due to the fact that the basic dye cannot penetrate a thick erythrocyte envelope. However, as soon as the nucleus leaves the cell, it immediately acquires dark color. 

The vessel network of area vasculosa is, therefore, the first blood-forming organ in the mammalian embryo. It is from here that lymphocytes, erythrocytes, and megakaryocytes emerge; however, granulocytes are never produced here.

In the course of events in the extra-embryonic areas outlined above, the first freely migrating cells appear in the mesenchyme of an organism, which is initially entirely free of wandering cells. This occurs at a very early stage, e.g. in rabbit or guinea pig embryos with a length of 4–5 mm. They emerge by rounding off and separating from the common undifferentiated, branched mesenchymal cells.

Generally, the first migrating cells seem to be similar to lymphocytes, i.e., they look like lymphocytes found in the area vasculosa vessels. Immediately upon their first emergence and even more so at somewhat later stages, migrating cells of other types can be found all over the mesenchyme, e.g. cells with pale, ameboid and often vacuolized plasma, and small, irregularly folded light or dark nuclei. Hence, the migrating cells in mesenchyme are manifold and highly polymorphic, with many different transitional forms between them. Such histological differences do not have any particular significance, since the basic feature of these cells, i.e., their progressive developmental ability, always remains unchanged and all migrating cells of mesenchyme are of equal value.

It is of the highest importance to note that the wandering cells in the mesenchyme are also identical—morphologically and physiologically—to the lymphocytes circulating in vessels and in blood in the area vasculosa. Both are free, ameboid, undifferentiated mesenchymal cells, even though their appearance can change significantly, depending on their environmental conditions.

Similar to those observed in the vessels of the area vasculosa, lymphocytes in the mesenchyme can be observed producing erythroblasts and megakaryocytes. However, in the mesenchyme, the wandering cells or lymphocytes can differentiate even further—with some of them differentiating into granulated myelocytes and leukocytes. These often develop into small, abortive leukocytes with polymorphous nuclei that are scattered in the tissue and very quickly subject to degeneration or phagocytosis.

There is one more fact that proves that mesenchymal migrating cells are identical with the lymphocytes of the area vasculosa. That is the fact that the endothelium of certain vessels (in particular the aortic endothelium) proliferates intensely at certain stages and in particular areas, whereby large clumps of cells emerge that project into the lumen, are then washed away by blood, and, finally are incorporated into the circulating blood. Here, they cannot be distinguished from the lymphocytes that originate from the area vasculosa.

At this point, I also wish to make a short comment on the circulating blood. Contrary to common opinion, it is a fact that white blood corpuscles – i.e., large lymphocytes – already exist in the blood from its earliest stages of development, and in significant quantities. In the blood-producing vessel network of the area vasculosa, most of the lymphocytes are held back as producers of erythroblasts, yet some of them enter the blood circulation.

The liver is the second blood-producing organ in a mammalian embryo. As is well known, erythrocytes, megakaryocytes, and granulocytes are produced extravascularly, between the liver cells. The question arises: where is the starting point of this hematopoiesis to be found? An investigation of appropriate stages shows that migrating cells initially appear between the liver cells and the vessel endothelium. These look exactly like the migrating cells in the rest of mesenchyme of the body. Some of these are similar to lymphocytes; some are pale and have small nuclei. If we go back further, to examine those stages in which cords of liver cells grow into the mesenchyme of the septum transversum, we will be convinced that the migrating cells are derived from this mesenchyme. The mesenchymal cells emerge either as such, or already as migrating cells, from between the liver cells and endothelial walls of growing vessels. Here, they remain unchanged for a short while, but soon unveil an amazing capability of development. At first, the migrating cells transform primarily into proliferating large "lymphocytes," which produce large amounts of erythroblasts and erythrocytes. A smaller number of the cells transform into granulocytes and megakaryocytes. Hence, in the liver, too, we note the same non-differentiated migrating mesenchymal cell, the lymphocyte, the starting point of hematopoiesis. The liver cell environment provides rather favorable conditions for the lymphocyte, in which it proliferates and produces a large variety of blood elements.

Finally, the third, final blood-producing organ, which takes over for the liver, is the bone marrow. I have also followed its origin from the very beginning. Here again, we observe that in the young undifferentiated mesenchyme, which invades the cartilage and resorbs it, some of the fixed cells become migrating cells that, at first, appear highly polymorphic. In this case, too, almost all of them ultimately achieve the appearance of typical lymphocytes, and, again, these cells become the starting point of blood formation, which proceeds much as it does in the liver as an extravascular process. However, in contrast to the liver, it continues here lifelong. Here, the lymphocytes, by means of differentiating proliferation, produce erythroblasts, megakaryocytes, and granulocytes of three various types, too. However, some of them produce their own sort, typical agranular lymphocytes, i.e., they function not only as myeloblasts, but also as lymphoblasts at the same time.

Until now, in terms of blood formation, we have actually only observed the emergence of the so-called myeloid tissue: erythrocytes, megakaryocytes, and granulocytes. One might propose, and Schridde actually says so, that the cells I have thus far called lymphocytes, are not lymphocytes at all, but myeloblasts. Indeed, the cellular elements I observed are histologically identical with the lymphocytes, but one might argue that only those cells should be described as lymphocytes or lymphoblasts that can be shown to produce typical small lymphocytes. According to Schridde, these cells, i.e., the true lymphoblasts, should appear only much later and look completely different.

While the single migrating cells described above might be more or less similar to the typical small lymphocytes from very early stages onwards, it is also true to say that the latter arise only relatively late in the organism in large quantities. In the bone marrow, we observe quite frequently, and later, more commonly, numerous progeny of the proliferating large lymphocytes that acquire an appropriate appearance. However, especially large quantities of small lymphocytes emerge in the thymus. So, here, I must also say a few things about this organ. Improved knowledge of thymic histogenesis is quite important in order to have a comprehensive understanding of the significance of lymphocytes in an organism.

At first, the thymus is epithelial only. Then, at a quite early stage, large lymphocytes occur in its mesenchymal environment, as in other areas of the organism, and, sometimes, pale migrating cells with small nuclei are detectable. All these ameboid cells then pass into the epithelial anlage, where they transform into typical large lymphocytes. Hence, the initial stages are exactly the same as in the liver, i.e., the first lymphocytes of the thymus are undoubtedly morphologically identical to the first granulocyte-producing lymphocytes in the liver. It is just that the conditions that exist for these cells are, apparently, quite different; since the lymphocytes in the thymus, irrespective of their exceptionally strong proliferation, never produce erythroblasts, and only very few granulocytes, and always only their own kind. Soon they infiltrate the entire organ. Upon proliferation, they become smaller and smaller, and, finally, evolve into massive numbers of typical small lymphocytes, which are washed out into the blood.

In the case of the developing lymph nodes, one again observes the differentiation of small, densely populated, undifferentiated mesenchymal cells into small ameboid migrating cells. Here, too, from the beginning, strong polymorphic features are evident among these migrating cells. Rather quickly, single large lymphocytes emerge; but for the most part, very small, ameboid, elements with bright nuclei and scarce cytoplasm initially appear. They proliferate, turning partially into typical small lymphocytes with dark nuclei and migrate to lymphatic crevices. On the other hand, one might occasionally observe them transform into large, even giant, lymphocytes that may then produce small lymphocytes, similarly to the thymus. Therefore, it must be pointed out with certainty that the large lymphocytes are not essential to produce the typical small lymphocytes in the embryo.

__________

An investigation of the fetal blood formation thus teaches us that one cannot distinguish between myeloblasts and lymphoblasts. A single cell type exists: a ubiquitous, non-differentiated, polymorphic, migrating mesenchymal cell, which, when influenced by specific existence conditions, has a variable appearance and may produce a variety of differentiation products. Likewise, the lymphoblasts and myeloblasts in embryo cannot be distinguished from each other through merely histological means.

__________

When considering blood formation of adult organisms from our present point of interest, two questions related to non-granulated cells need to be resolved.

The first question addresses changing relationships between the large and the small lymphocytes. Those two terms were created on the basis of studies in adult organisms. Currently, the general opinion is that, in an adult organism, the small lymphocytes actually arise via proliferation of larger lymphocytes in the germinal centers; however, they are themselves incapable of further reproduction, and, in particular, they cannot re-transform themselves into large lymphocytes.

However, based on my studies, I must take a different viewpoint. Indeed, in an adult organism, the small lymphocytes mostly develop through proliferation of larger cells. For some time immediately after their emergence, they are, in fact, unable to proliferate. Most likely, this state depends on the special relation between nucleus and the cytoplasm, caused by the previous intensive proliferation. I am absolutely certain that these small mature lymphocytes are able to proliferate further. They enter the blood and circulate, and where they find appropriate conditions they can function again as fully non-differentiated mesenchymal cells and present a starting point for various developmental events; they can certainly transform themselves, in a hypertrophic way, into large lymphocytes capable of division. In my opinion, the reason for such a strange phenomenon, that the majority of lymphocytes in adult organisms must pass through the stage of a small cell incapable of proliferation for a certain time period, is that small lymphocytes can be easily transported from one place to another in blood and lymph flow, thus reaching all organs and tissues everywhere. Weidenreich has also recently expressed this opinion.

Hence, the small and the large lymphocytes are merely transitory stages in the life of one and the same type of cell, i.e., of a lymphocyte in the broadest sense of the word.

The second question addresses the distinction between special types of lymphoblasts and myeloblasts in an adult organism. If this difference, as we have seen, is not justified in the embryo, one does not have to conclude, that, a priori, it is not possible in the adult organism. A number of authors, starting with Schridde, also postulate that non-granular cells in lymphoid tissue are not the same large lymphocytes found in the myeloid tissue, but represent two different types of cells, namely lymphoblasts and myeloblasts.

When defining criteria for identification of the two cell types, histological features should certainly be defined first, and, secondly, physiological characteristics, especially their prospective developmental potential.

In regard to histological characteristics of the two cell types, I asked Sir Dr. S. Tschaschin in my laboratory to check in detail the differences reported by Schridde.

As far as we can judge from the results obtained to date, in most cases one is able to note certain differences in newborn animals. However, these differences are small. In general, the lymphoblasts have a thinner and more homogenous cytotoplasmic rim; in the nucleus, larger nucleoli are found which are, as a rule, densely colored. The so-called myeloblasts have mostly, though not always, a broader cytotoplasmic rim of a lighter, reticular structure, with a widely variable degree of basophilia. The nucleus always contains nucleoli, but these are smaller and their color is less distinct. Generally, the myeloblasts appear more polymorphic than the lymphoblasts, and the differences among the myeloblasts are often more prominent than those between myeloblasts and lymphoblasts.

In particular, special attention was given to the Altmann-Schridde staining technique, which has been described by Schridde as the most important method for discrimination. It turns out that the Eosin-Azure-staining of the large cells in the adenoid tissue and in the bone marrow, i.e., Schridde’s lymphoblasts and myeloblasts, detected both cells with and without granules; the majority of which contain only a few granules. This is in contrast to Schridde, who states that lymphoblasts should always contain granules, while myeloblasts never do. The small and middle-sized lymphocytes, however, always contain very clear and numerous granules. The specific granules and the eosinophilic granules are stainable as well. This method generally gives exactly the same images as the well-known original technique by Altmann, and it seems to me that it is especially inappropriate for the studies of blood cells. The different details of staining that Schridde refers to cannot be seriously considered for distinguishing between different types of the cells. It goes without saying that all these granulation images, in general, cannot have any particular significance because, undoubtedly, the granules can emerge de novo or disappear in one and the same cell, depending on its functional state, even if they exist in vivo.

So even if there are certain unstable histological differences that are difficult to define, one must consider that the cells in lymph nodes and in marrow exist in very different environments, and, therefore, this factor alone might already present a sufficient explanation for the histological differences. Moreover, we saw clearly that the lymphocytes from the very first embryonic stages onwards are characterized by an extreme polymorphism, even though all of them look completely similar. Hence, a clear separation between lymphoblasts and myeloblasts is not justified on histological basis alone. Such a separation would only be possible if we could succeed in proving that cells of one type can never transform (differentiate) into cells of the other type and, vice versa, the (cell) products of differentiation are completely different for both cell types under any possible conditions.

It is these physiological, or rather reproductive, cytogenetic characteristics of our cells that we would now like to scrutinize. If the lymphocytes in adenoid tissue and marrow lymphocytes are similar and produce normally divergent differentiation products solely due to different conditions of existence, one could try to recreate such conditions artificially so that the lymphocytes of adenoid tissue, the supposed lymphoblasts, could differentiate into granulocytes and erythroblasts. It is known, however, that myeloid transformation can take place in adenoid tissue on various occasions. Additionally, it is generally accepted that the latter originate from autochthonous elements. But the question remains, from which cells? It is known that it is not the cells of the germinal centers that differentiate into myelocytes and erythroblasts, but cells located in the trabeculae of the lymph nodes and the red pulp of the spleen. For the dualists, it is exactly this that proves that their view is correct. According to them, myeloid elements are derived from either pre-existing myeloblasts that are very different from the lymphoblasts or directly from the vessel-lining cells. Others assume that, in this case, some special adventitial undifferentiated mesenchymal cells may become a starting point of the transformation.

In my laboratory, I asked Mme Dr. H. Babkin to perform special experiments in animals, in order to get closer to the answer to this issue. In the spleen it was easy to induce, in part, the myeloid transformation, i.e., myelo- and megakaryocytopoiesis—it sufficed to introduce an aseptic foreign body into the spleen tissue; numerous myelocytes and megakaryocytes soon emerge in its environment. In the lymph nodes, however, this and other methods have so far been unsuccessful in triggering a myeloid transformation. Similarly, in the spleen, the Malpighi’s bodies remained unchanged: the myelocytes appeared only in red pulp and venous sinuses.

In the first instance, these experiments seem to confirm the difference between lymphocytes and myeloblasts. However, I do not believe that these preliminary results are to be interpreted in this way after all. We must take into account that considering the very special conditions existing in the adenoid tissue, these areas would be more suitable than other parts of the body for homoplastic proliferation of undifferentiated mesenchymal cells and/or lymphocytes. The pre-requisites for a myeloid transformation of lymphocytes are normally completely missing in such "breeding" environments. Two different conditions are necessary, on the one hand for a "homoplastic" proliferation in an unchanged, undifferentiated state and, on the other hand, for "heteroplastic" development (differentiation) towards myeloid elements, that, apparently, cannot co-exist in the adult organism. This is why neither the cells of the germinal centers, nor the young small lymphocytes can be artificially induced to directly transform into granulocytes and erythroblasts at the place of their emergence. As it is known, the homoplastic proliferation ceases, and the germinal centers disappear wherever the myeloid transformation begins.

The young age of the bulk lymphocyte population in adenoid tissue may be a probable obstacle for the myeloid transformation. It may be that for such cells a certain period of time has to elapse in order for them to become capable of myeloid differentiation, and, moreover, for this purpose, additional special favorable conditions must exist. For example, it can be speculated that their blood circulation makes the lymphocytes originating in the adenoid tissue more susceptible to myeloid transformation.

While all of this evidence may represent only indirect and probably doubtful proof that lymphocytes of the lymphoid tissue and those of the myeloid tissue are equivalent with regard their prospective potential to develop in an adult organism, in my opinion, there is another direct, albeit preliminary argument, which is often ignored by the various authors who have described heterotopic formation (differentiation) of myeloid tissue.

Some time ago I studied the histogenesis of myeloid tissue that develops in the rabbit kidney after the ligature of its main vessels. This approach is favorable in the sense that lymphoid elements are apparently absent in the scarce stroma of the kidney. It turned out that all of the bone marrow elements—granulocytes, megakaryocytes, and erythroblasts—emerge from the lymphocytes circulating in blood, i.e., from cells that are proven to originate from adenoid tissue and its germinal centers. In the course of this process, the small blood lymphocytes transform themselves into large lymphocytes again and migrate into the tissue, either as small cells, or as preformed large cells. While still inside the vessels, or only after they have left them, they either produce myelocytes by accumulation of granules in their cytoplasm, or form erythroblasts by producing hemoglobin. Actual myeloblasts do not seem to exist in normal peripheral blood, even though K. Ziegler believes the large mononuclear leukocytes to be such continuously undifferentiated cells with myeloid differentiation capacity. But these, too, according to more recent findings, emerge from banal small lymphocytes.

In my opinion, it can be assumed that the heterotopic emergence of myeloid elements in humans may occur at the expense of ubiquitous lymphocytes in the circulating blood or to lymphocytes of the connective and adenoid tissue, which are completely equivalent, but not at the cost of latent myeloblasts, or problematic proliferating adventitial cells, or the cells of vessel walls. 

All in all, my final conclusion is that for adult organisms, as with the developing embryo, there is no reason to assume the existence of two clearly distinct cell types, i.e., the myeloblasts and the lymphoblasts. In mammalian organisms a single type of cell exists, i.e., the lymphocyte, in the broadest sense of the term, which both looks different and may produce a variety of differentiation progeny depending on their current location and survival factors. The lymphocytes are ubiquitous, equivalent for all places, and are indistinguishable from one another by means of histological or hematological approaches. In adenoid tissue, during homoplastic proliferation, they always produce lymphocytes. An easily transportable cellular form emerges: a small lymphocyte, which circulates in the blood and lymph flow, moving throughout the body, until, after a certain period of inactivation, it unfolds its full ability for development.

Originally published in: Folia Haematologica 8.1909, 125-134. (English translation prepared by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking for Cellular Therapy and Transplantation, Vol. 1, No. 3, 2009. Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.)

" ["~DETAIL_TEXT"]=> string(27192) "

The first blood cells are known to emerge from the so-called blood islands, i.e., irregularly shaped aggregates of peripheral mesenchymal mesoblasts, forming a network of cells in the area opaca. The peripheral cells of the blood islands flatten out, becoming endothelial cells, whereas the inner cells round up, becoming the primary blood cells that are released into the liquid blood plasma. I have now found that these primitive blood cells (which is what I call them), contrary to what would be commonly expected, are not erythroblasts but completely undifferentiated elements with a round bright nucleus and narrow basophilic cytoplasm. These are neither red nor white blood corpuscles. They could be considered white blood corpuscles since they occasionally, especially in the chicken, appear ameboid, and seem very similar to large lymphocytes. They proliferate extensively, although the increasing numbers during the early stages may in part due to the detachment of endothelial cells in the primitive vessels.

After some time, one observes how these primitive blood cells differentiate into two kinds of cells. One type – which makes up the majority – produces hemoglobin in their cytoplasm, and thus become the so-called primitive erythroblasts. These are large and rapidly proliferating cells that, ultimately, grow to rather hemoglobin-rich cells with relatively small nuclei. They serve the organism for a long period of time, but die out gradually and are replaced by the definitive erythroblasts and erythrocytes.

Another fraction of the primitive blood cells remains hemoglobin-free. These cells now possess a large bright nucleus with nucleoli, and a thin, ameboid, strongly basophilic rim of cytoplasm. In histological terms, they resemble large lymphocytes. These are the first embryonic leukocytes that first appear as lymphocytes.

In what follows, we will see how these intravascular lymphocytes become the starting point of erythropoiesis in the area vasculosa. Through "heteroplastic proliferation" (differentiation) they produce secondary erythroblasts; first to appear are megaloblasts that are variable in size and have bright nuclei; later generations of these cells increasingly resemble the normoblasts, and, finally within the vessels of area vasculosa, a mixed population arises composed of primitive erythroblasts that are rich in hemoglobin, basophilic lymphocytes, and large numbers of intensely proliferating megaloblasts and normoblasts growing in clumps.

However, despite the fact that these lymphocytes produce erythroblasts, they should not be considered erythroblasts themselves; as, in addition to the production of hemoglobin-containing cells, they also give rise to megakaryocytes and diverse other elements in the yolk sack, which have nothing to do with the red blood corpuscles.

Such secondary erythroblasts are quite distinct to the primitive erythroblasts, differing from them by their smaller size and, in contrast to normoblasts, by their smaller and darker nucleus. Ultimately, this nucleus becomes pyknotic and leaves the cell in a degenerative state.

Here, I avoid consciously the issue of erythroblast enucleation, since the current discussions do not correspond to the factual material at hand. In my opinion, all known facts speak in favor and not against nucleus expulsion, whereas no direct proof can be presented for its intra-cellular disappearance – at least in normal hematopoiesis. Although pale shadows of nuclei are often visible, as for example in hemoglobin-rich primitive erythroblasts, this is but due to the fact that the basic dye cannot penetrate a thick erythrocyte envelope. However, as soon as the nucleus leaves the cell, it immediately acquires dark color. 

The vessel network of area vasculosa is, therefore, the first blood-forming organ in the mammalian embryo. It is from here that lymphocytes, erythrocytes, and megakaryocytes emerge; however, granulocytes are never produced here.

In the course of events in the extra-embryonic areas outlined above, the first freely migrating cells appear in the mesenchyme of an organism, which is initially entirely free of wandering cells. This occurs at a very early stage, e.g. in rabbit or guinea pig embryos with a length of 4–5 mm. They emerge by rounding off and separating from the common undifferentiated, branched mesenchymal cells.

Generally, the first migrating cells seem to be similar to lymphocytes, i.e., they look like lymphocytes found in the area vasculosa vessels. Immediately upon their first emergence and even more so at somewhat later stages, migrating cells of other types can be found all over the mesenchyme, e.g. cells with pale, ameboid and often vacuolized plasma, and small, irregularly folded light or dark nuclei. Hence, the migrating cells in mesenchyme are manifold and highly polymorphic, with many different transitional forms between them. Such histological differences do not have any particular significance, since the basic feature of these cells, i.e., their progressive developmental ability, always remains unchanged and all migrating cells of mesenchyme are of equal value.

It is of the highest importance to note that the wandering cells in the mesenchyme are also identical—morphologically and physiologically—to the lymphocytes circulating in vessels and in blood in the area vasculosa. Both are free, ameboid, undifferentiated mesenchymal cells, even though their appearance can change significantly, depending on their environmental conditions.

Similar to those observed in the vessels of the area vasculosa, lymphocytes in the mesenchyme can be observed producing erythroblasts and megakaryocytes. However, in the mesenchyme, the wandering cells or lymphocytes can differentiate even further—with some of them differentiating into granulated myelocytes and leukocytes. These often develop into small, abortive leukocytes with polymorphous nuclei that are scattered in the tissue and very quickly subject to degeneration or phagocytosis.

There is one more fact that proves that mesenchymal migrating cells are identical with the lymphocytes of the area vasculosa. That is the fact that the endothelium of certain vessels (in particular the aortic endothelium) proliferates intensely at certain stages and in particular areas, whereby large clumps of cells emerge that project into the lumen, are then washed away by blood, and, finally are incorporated into the circulating blood. Here, they cannot be distinguished from the lymphocytes that originate from the area vasculosa.

At this point, I also wish to make a short comment on the circulating blood. Contrary to common opinion, it is a fact that white blood corpuscles – i.e., large lymphocytes – already exist in the blood from its earliest stages of development, and in significant quantities. In the blood-producing vessel network of the area vasculosa, most of the lymphocytes are held back as producers of erythroblasts, yet some of them enter the blood circulation.

The liver is the second blood-producing organ in a mammalian embryo. As is well known, erythrocytes, megakaryocytes, and granulocytes are produced extravascularly, between the liver cells. The question arises: where is the starting point of this hematopoiesis to be found? An investigation of appropriate stages shows that migrating cells initially appear between the liver cells and the vessel endothelium. These look exactly like the migrating cells in the rest of mesenchyme of the body. Some of these are similar to lymphocytes; some are pale and have small nuclei. If we go back further, to examine those stages in which cords of liver cells grow into the mesenchyme of the septum transversum, we will be convinced that the migrating cells are derived from this mesenchyme. The mesenchymal cells emerge either as such, or already as migrating cells, from between the liver cells and endothelial walls of growing vessels. Here, they remain unchanged for a short while, but soon unveil an amazing capability of development. At first, the migrating cells transform primarily into proliferating large "lymphocytes," which produce large amounts of erythroblasts and erythrocytes. A smaller number of the cells transform into granulocytes and megakaryocytes. Hence, in the liver, too, we note the same non-differentiated migrating mesenchymal cell, the lymphocyte, the starting point of hematopoiesis. The liver cell environment provides rather favorable conditions for the lymphocyte, in which it proliferates and produces a large variety of blood elements.

Finally, the third, final blood-producing organ, which takes over for the liver, is the bone marrow. I have also followed its origin from the very beginning. Here again, we observe that in the young undifferentiated mesenchyme, which invades the cartilage and resorbs it, some of the fixed cells become migrating cells that, at first, appear highly polymorphic. In this case, too, almost all of them ultimately achieve the appearance of typical lymphocytes, and, again, these cells become the starting point of blood formation, which proceeds much as it does in the liver as an extravascular process. However, in contrast to the liver, it continues here lifelong. Here, the lymphocytes, by means of differentiating proliferation, produce erythroblasts, megakaryocytes, and granulocytes of three various types, too. However, some of them produce their own sort, typical agranular lymphocytes, i.e., they function not only as myeloblasts, but also as lymphoblasts at the same time.

Until now, in terms of blood formation, we have actually only observed the emergence of the so-called myeloid tissue: erythrocytes, megakaryocytes, and granulocytes. One might propose, and Schridde actually says so, that the cells I have thus far called lymphocytes, are not lymphocytes at all, but myeloblasts. Indeed, the cellular elements I observed are histologically identical with the lymphocytes, but one might argue that only those cells should be described as lymphocytes or lymphoblasts that can be shown to produce typical small lymphocytes. According to Schridde, these cells, i.e., the true lymphoblasts, should appear only much later and look completely different.

While the single migrating cells described above might be more or less similar to the typical small lymphocytes from very early stages onwards, it is also true to say that the latter arise only relatively late in the organism in large quantities. In the bone marrow, we observe quite frequently, and later, more commonly, numerous progeny of the proliferating large lymphocytes that acquire an appropriate appearance. However, especially large quantities of small lymphocytes emerge in the thymus. So, here, I must also say a few things about this organ. Improved knowledge of thymic histogenesis is quite important in order to have a comprehensive understanding of the significance of lymphocytes in an organism.

At first, the thymus is epithelial only. Then, at a quite early stage, large lymphocytes occur in its mesenchymal environment, as in other areas of the organism, and, sometimes, pale migrating cells with small nuclei are detectable. All these ameboid cells then pass into the epithelial anlage, where they transform into typical large lymphocytes. Hence, the initial stages are exactly the same as in the liver, i.e., the first lymphocytes of the thymus are undoubtedly morphologically identical to the first granulocyte-producing lymphocytes in the liver. It is just that the conditions that exist for these cells are, apparently, quite different; since the lymphocytes in the thymus, irrespective of their exceptionally strong proliferation, never produce erythroblasts, and only very few granulocytes, and always only their own kind. Soon they infiltrate the entire organ. Upon proliferation, they become smaller and smaller, and, finally, evolve into massive numbers of typical small lymphocytes, which are washed out into the blood.

In the case of the developing lymph nodes, one again observes the differentiation of small, densely populated, undifferentiated mesenchymal cells into small ameboid migrating cells. Here, too, from the beginning, strong polymorphic features are evident among these migrating cells. Rather quickly, single large lymphocytes emerge; but for the most part, very small, ameboid, elements with bright nuclei and scarce cytoplasm initially appear. They proliferate, turning partially into typical small lymphocytes with dark nuclei and migrate to lymphatic crevices. On the other hand, one might occasionally observe them transform into large, even giant, lymphocytes that may then produce small lymphocytes, similarly to the thymus. Therefore, it must be pointed out with certainty that the large lymphocytes are not essential to produce the typical small lymphocytes in the embryo.

__________

An investigation of the fetal blood formation thus teaches us that one cannot distinguish between myeloblasts and lymphoblasts. A single cell type exists: a ubiquitous, non-differentiated, polymorphic, migrating mesenchymal cell, which, when influenced by specific existence conditions, has a variable appearance and may produce a variety of differentiation products. Likewise, the lymphoblasts and myeloblasts in embryo cannot be distinguished from each other through merely histological means.

__________

When considering blood formation of adult organisms from our present point of interest, two questions related to non-granulated cells need to be resolved.

The first question addresses changing relationships between the large and the small lymphocytes. Those two terms were created on the basis of studies in adult organisms. Currently, the general opinion is that, in an adult organism, the small lymphocytes actually arise via proliferation of larger lymphocytes in the germinal centers; however, they are themselves incapable of further reproduction, and, in particular, they cannot re-transform themselves into large lymphocytes.

However, based on my studies, I must take a different viewpoint. Indeed, in an adult organism, the small lymphocytes mostly develop through proliferation of larger cells. For some time immediately after their emergence, they are, in fact, unable to proliferate. Most likely, this state depends on the special relation between nucleus and the cytoplasm, caused by the previous intensive proliferation. I am absolutely certain that these small mature lymphocytes are able to proliferate further. They enter the blood and circulate, and where they find appropriate conditions they can function again as fully non-differentiated mesenchymal cells and present a starting point for various developmental events; they can certainly transform themselves, in a hypertrophic way, into large lymphocytes capable of division. In my opinion, the reason for such a strange phenomenon, that the majority of lymphocytes in adult organisms must pass through the stage of a small cell incapable of proliferation for a certain time period, is that small lymphocytes can be easily transported from one place to another in blood and lymph flow, thus reaching all organs and tissues everywhere. Weidenreich has also recently expressed this opinion.

Hence, the small and the large lymphocytes are merely transitory stages in the life of one and the same type of cell, i.e., of a lymphocyte in the broadest sense of the word.

The second question addresses the distinction between special types of lymphoblasts and myeloblasts in an adult organism. If this difference, as we have seen, is not justified in the embryo, one does not have to conclude, that, a priori, it is not possible in the adult organism. A number of authors, starting with Schridde, also postulate that non-granular cells in lymphoid tissue are not the same large lymphocytes found in the myeloid tissue, but represent two different types of cells, namely lymphoblasts and myeloblasts.

When defining criteria for identification of the two cell types, histological features should certainly be defined first, and, secondly, physiological characteristics, especially their prospective developmental potential.

In regard to histological characteristics of the two cell types, I asked Sir Dr. S. Tschaschin in my laboratory to check in detail the differences reported by Schridde.

As far as we can judge from the results obtained to date, in most cases one is able to note certain differences in newborn animals. However, these differences are small. In general, the lymphoblasts have a thinner and more homogenous cytotoplasmic rim; in the nucleus, larger nucleoli are found which are, as a rule, densely colored. The so-called myeloblasts have mostly, though not always, a broader cytotoplasmic rim of a lighter, reticular structure, with a widely variable degree of basophilia. The nucleus always contains nucleoli, but these are smaller and their color is less distinct. Generally, the myeloblasts appear more polymorphic than the lymphoblasts, and the differences among the myeloblasts are often more prominent than those between myeloblasts and lymphoblasts.

In particular, special attention was given to the Altmann-Schridde staining technique, which has been described by Schridde as the most important method for discrimination. It turns out that the Eosin-Azure-staining of the large cells in the adenoid tissue and in the bone marrow, i.e., Schridde’s lymphoblasts and myeloblasts, detected both cells with and without granules; the majority of which contain only a few granules. This is in contrast to Schridde, who states that lymphoblasts should always contain granules, while myeloblasts never do. The small and middle-sized lymphocytes, however, always contain very clear and numerous granules. The specific granules and the eosinophilic granules are stainable as well. This method generally gives exactly the same images as the well-known original technique by Altmann, and it seems to me that it is especially inappropriate for the studies of blood cells. The different details of staining that Schridde refers to cannot be seriously considered for distinguishing between different types of the cells. It goes without saying that all these granulation images, in general, cannot have any particular significance because, undoubtedly, the granules can emerge de novo or disappear in one and the same cell, depending on its functional state, even if they exist in vivo.

So even if there are certain unstable histological differences that are difficult to define, one must consider that the cells in lymph nodes and in marrow exist in very different environments, and, therefore, this factor alone might already present a sufficient explanation for the histological differences. Moreover, we saw clearly that the lymphocytes from the very first embryonic stages onwards are characterized by an extreme polymorphism, even though all of them look completely similar. Hence, a clear separation between lymphoblasts and myeloblasts is not justified on histological basis alone. Such a separation would only be possible if we could succeed in proving that cells of one type can never transform (differentiate) into cells of the other type and, vice versa, the (cell) products of differentiation are completely different for both cell types under any possible conditions.

It is these physiological, or rather reproductive, cytogenetic characteristics of our cells that we would now like to scrutinize. If the lymphocytes in adenoid tissue and marrow lymphocytes are similar and produce normally divergent differentiation products solely due to different conditions of existence, one could try to recreate such conditions artificially so that the lymphocytes of adenoid tissue, the supposed lymphoblasts, could differentiate into granulocytes and erythroblasts. It is known, however, that myeloid transformation can take place in adenoid tissue on various occasions. Additionally, it is generally accepted that the latter originate from autochthonous elements. But the question remains, from which cells? It is known that it is not the cells of the germinal centers that differentiate into myelocytes and erythroblasts, but cells located in the trabeculae of the lymph nodes and the red pulp of the spleen. For the dualists, it is exactly this that proves that their view is correct. According to them, myeloid elements are derived from either pre-existing myeloblasts that are very different from the lymphoblasts or directly from the vessel-lining cells. Others assume that, in this case, some special adventitial undifferentiated mesenchymal cells may become a starting point of the transformation.

In my laboratory, I asked Mme Dr. H. Babkin to perform special experiments in animals, in order to get closer to the answer to this issue. In the spleen it was easy to induce, in part, the myeloid transformation, i.e., myelo- and megakaryocytopoiesis—it sufficed to introduce an aseptic foreign body into the spleen tissue; numerous myelocytes and megakaryocytes soon emerge in its environment. In the lymph nodes, however, this and other methods have so far been unsuccessful in triggering a myeloid transformation. Similarly, in the spleen, the Malpighi’s bodies remained unchanged: the myelocytes appeared only in red pulp and venous sinuses.

In the first instance, these experiments seem to confirm the difference between lymphocytes and myeloblasts. However, I do not believe that these preliminary results are to be interpreted in this way after all. We must take into account that considering the very special conditions existing in the adenoid tissue, these areas would be more suitable than other parts of the body for homoplastic proliferation of undifferentiated mesenchymal cells and/or lymphocytes. The pre-requisites for a myeloid transformation of lymphocytes are normally completely missing in such "breeding" environments. Two different conditions are necessary, on the one hand for a "homoplastic" proliferation in an unchanged, undifferentiated state and, on the other hand, for "heteroplastic" development (differentiation) towards myeloid elements, that, apparently, cannot co-exist in the adult organism. This is why neither the cells of the germinal centers, nor the young small lymphocytes can be artificially induced to directly transform into granulocytes and erythroblasts at the place of their emergence. As it is known, the homoplastic proliferation ceases, and the germinal centers disappear wherever the myeloid transformation begins.

The young age of the bulk lymphocyte population in adenoid tissue may be a probable obstacle for the myeloid transformation. It may be that for such cells a certain period of time has to elapse in order for them to become capable of myeloid differentiation, and, moreover, for this purpose, additional special favorable conditions must exist. For example, it can be speculated that their blood circulation makes the lymphocytes originating in the adenoid tissue more susceptible to myeloid transformation.

While all of this evidence may represent only indirect and probably doubtful proof that lymphocytes of the lymphoid tissue and those of the myeloid tissue are equivalent with regard their prospective potential to develop in an adult organism, in my opinion, there is another direct, albeit preliminary argument, which is often ignored by the various authors who have described heterotopic formation (differentiation) of myeloid tissue.

Some time ago I studied the histogenesis of myeloid tissue that develops in the rabbit kidney after the ligature of its main vessels. This approach is favorable in the sense that lymphoid elements are apparently absent in the scarce stroma of the kidney. It turned out that all of the bone marrow elements—granulocytes, megakaryocytes, and erythroblasts—emerge from the lymphocytes circulating in blood, i.e., from cells that are proven to originate from adenoid tissue and its germinal centers. In the course of this process, the small blood lymphocytes transform themselves into large lymphocytes again and migrate into the tissue, either as small cells, or as preformed large cells. While still inside the vessels, or only after they have left them, they either produce myelocytes by accumulation of granules in their cytoplasm, or form erythroblasts by producing hemoglobin. Actual myeloblasts do not seem to exist in normal peripheral blood, even though K. Ziegler believes the large mononuclear leukocytes to be such continuously undifferentiated cells with myeloid differentiation capacity. But these, too, according to more recent findings, emerge from banal small lymphocytes.

In my opinion, it can be assumed that the heterotopic emergence of myeloid elements in humans may occur at the expense of ubiquitous lymphocytes in the circulating blood or to lymphocytes of the connective and adenoid tissue, which are completely equivalent, but not at the cost of latent myeloblasts, or problematic proliferating adventitial cells, or the cells of vessel walls. 

All in all, my final conclusion is that for adult organisms, as with the developing embryo, there is no reason to assume the existence of two clearly distinct cell types, i.e., the myeloblasts and the lymphoblasts. In mammalian organisms a single type of cell exists, i.e., the lymphocyte, in the broadest sense of the term, which both looks different and may produce a variety of differentiation progeny depending on their current location and survival factors. The lymphocytes are ubiquitous, equivalent for all places, and are indistinguishable from one another by means of histological or hematological approaches. In adenoid tissue, during homoplastic proliferation, they always produce lymphocytes. An easily transportable cellular form emerges: a small lymphocyte, which circulates in the blood and lymph flow, moving throughout the body, until, after a certain period of inactivation, it unfolds its full ability for development.

Originally published in: Folia Haematologica 8.1909, 125-134. (English translation prepared by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking for Cellular Therapy and Transplantation, Vol. 1, No. 3, 2009. Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.)

" ["DETAIL_TEXT_TYPE"]=> string(4) "html" ["~DETAIL_TEXT_TYPE"]=> string(4) "html" ["PREVIEW_TEXT"]=> string(0) "" ["~PREVIEW_TEXT"]=> string(0) "" ["PREVIEW_TEXT_TYPE"]=> string(4) "text" ["~PREVIEW_TEXT_TYPE"]=> string(4) "text" ["PREVIEW_PICTURE"]=> NULL ["~PREVIEW_PICTURE"]=> NULL ["LANG_DIR"]=> string(4) "/ru/" ["~LANG_DIR"]=> string(4) "/ru/" ["SORT"]=> string(3) "500" ["~SORT"]=> string(3) "500" ["CODE"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" ["~CODE"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" ["EXTERNAL_ID"]=> string(3) "901" ["~EXTERNAL_ID"]=> string(3) "901" ["IBLOCK_TYPE_ID"]=> string(7) "journal" ["~IBLOCK_TYPE_ID"]=> string(7) "journal" ["IBLOCK_CODE"]=> string(7) "volumes" ["~IBLOCK_CODE"]=> string(7) "volumes" ["IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["~IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["LID"]=> string(2) "s2" ["~LID"]=> string(2) "s2" ["EDIT_LINK"]=> NULL ["DELETE_LINK"]=> NULL ["DISPLAY_ACTIVE_FROM"]=> string(0) "" ["IPROPERTY_VALUES"]=> array(18) { ["ELEMENT_META_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_META_KEYWORDS"]=> string(0) "" ["ELEMENT_META_DESCRIPTION"]=> string(362) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающихThe lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" ["ELEMENT_PREVIEW_PICTURE_FILE_ALT"]=> string(1297) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <p class="bodytext"> Переведено с: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Перевод: Чухловин А. Б., Неворотин А. И. <br> </p> <p> Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов. </p> <br>" ["ELEMENT_PREVIEW_PICTURE_FILE_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_DETAIL_PICTURE_FILE_ALT"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_DETAIL_PICTURE_FILE_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_KEYWORDS"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_DESCRIPTION"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_ALT"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_NAME"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" ["SECTION_DETAIL_PICTURE_FILE_ALT"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_DETAIL_PICTURE_FILE_TITLE"]=> string(230) "Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_DETAIL_PICTURE_FILE_NAME"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" ["ELEMENT_PREVIEW_PICTURE_FILE_NAME"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" ["ELEMENT_DETAIL_PICTURE_FILE_NAME"]=> string(100) "limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-embrionalnom-razvitii-i-post" } ["FIELDS"]=> array(1) { ["IBLOCK_SECTION_ID"]=> string(2) "37" } ["PROPERTIES"]=> array(18) { ["KEYWORDS"]=> array(36) { ["ID"]=> string(2) "19" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:46:01" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(27) "Ключевые слова" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "KEYWORDS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "19" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "4" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "Y" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "Y" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> bool(false) ["VALUE"]=> bool(false) ["DESCRIPTION"]=> bool(false) ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> bool(false) ["~DESCRIPTION"]=> bool(false) ["~NAME"]=> string(27) "Ключевые слова" ["~DEFAULT_VALUE"]=> string(0) "" } ["SUBMITTED"]=> array(36) { ["ID"]=> string(2) "20" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Дата подачи" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "SUBMITTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "20" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Дата подачи" ["~DEFAULT_VALUE"]=> NULL } ["ACCEPTED"]=> array(36) { ["ID"]=> string(2) "21" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(25) "Дата принятия" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "ACCEPTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "21" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(25) "Дата принятия" ["~DEFAULT_VALUE"]=> NULL } ["PUBLISHED"]=> array(36) { ["ID"]=> string(2) "22" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Дата публикации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "PUBLISHED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "22" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Дата публикации" ["~DEFAULT_VALUE"]=> NULL } ["CONTACT"]=> array(36) { ["ID"]=> string(2) "23" ["TIMESTAMP_X"]=> string(19) "2015-09-03 14:43:05" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(14) "Контакт" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "CONTACT" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "23" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(14) "Контакт" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHORS"]=> array(36) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12480" } ["VALUE"]=> array(1) { [0]=> string(3) "900" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "900" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_RU"]=> array(36) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12447" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">Проф. А. Максимов</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

Проф. А. Максимов

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_RU"]=> array(36) { ["ID"]=> string(2) "26" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(22) "Организации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "26" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(22) "Организации" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_RU"]=> array(36) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12448" ["VALUE"]=> array(2) { ["TEXT"]=> string(1297) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <p class="bodytext"> Переведено с: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Перевод: Чухловин А. Б., Неворотин А. И. <br> </p> <p> Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов. </p> <br>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(1199) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Переведено с: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Перевод: Чухловин А. Б., Неворотин А. И.

Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов.


" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["DOI"]=> array(36) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12449" ["VALUE"]=> string(29) "10.3205/ctt-2009-en-000032.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2009-en-000032.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_EN"]=> array(36) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12459" ["VALUE"]=> array(2) { ["TEXT"]=> string(66) "<p class="Autor">By Alexander A. Maximow</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(44) "

By Alexander A. Maximow

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_EN"]=> array(36) { ["ID"]=> string(2) "38" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Organization" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "38" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Organization" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_EN"]=> array(36) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12457" ["VALUE"]=> array(2) { ["TEXT"]=> string(1072) "<p> Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909. </p> <p class="bodytext"> Translated from: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking. <br> <br> Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.<br> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(980) "

Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909.

Translated from: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking.

Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["NAME_EN"]=> array(36) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12450" ["VALUE"]=> string(132) "The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(132) "The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" } ["FULL_TEXT_RU"]=> &array(36) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12451" ["VALUE"]=> array(2) { ["TEXT"]=> string(49803) "<p class="bodytext"> Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области <em>area opaca</em>. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах. <br> <br> Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.<br> <br> Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.<br> <br> Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в <em>area vasculosa</em>. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах <em>area vasculosa</em>, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.<br> <br> Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами. <br> <br> Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку. <br>     <br> Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.   <br>    <br> Сосудистая сеть <em>area vasculosa</em> является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.<br>     <br> В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.<br>      <br> Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах <em>area vasculosa</em>. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.<br>      <br> Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам <em>area vasculosa</em>, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.<br>     <br> Так  же, как лимфоциты в сосудах <em>area vasculosa</em>, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу.  <br>      <br> Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам <em>area vasculosa</em>, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из <em>area vasculosa</em>. <br>     <br> Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети <em>area vasculosa</em>. Однако часть их все же поступает в кровоток. <br>       <br> Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму <em>septum transversum</em>, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.<br>      <br> Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.<br>       <br> До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному. <br>       <br> Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.<br> <br> Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.<br>     <br> Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты. </p> <p class="align-center"> __________ </p> <p class="bodytext"> Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.   </p> <p class="align-center"> __________ </p> <p class="bodytext"> Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты. <br> <br> Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.    <br> <br> Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова.  <br> <br> Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.    <br> <br> Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.     <br> <br> Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde. <br> <br> Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.    <br> <br> Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.     <br> <br> Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.       <br> <br> Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.     <br> <br> В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.    <br> <br> Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.      <br> <br> Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.     <br> <br> Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.       <br> <br> В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.     <br> <br> Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.     <br> <br> В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию. <br> <br> <b>Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)</b> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(49117) "

Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области area opaca. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах.

Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.

Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.

Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в area vasculosa. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах area vasculosa, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.

Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами.

Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку.
   
Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.  
  
Сосудистая сеть area vasculosa является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.
   
В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.
    
Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах area vasculosa. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.
    
Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам area vasculosa, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.
   
Так  же, как лимфоциты в сосудах area vasculosa, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу. 
    
Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам area vasculosa, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из area vasculosa.
   
Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети area vasculosa. Однако часть их все же поступает в кровоток.
     
Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму septum transversum, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.
    
Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.
     
До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному.
     
Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.

Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.
   
Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты.

__________

Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.  

__________

Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты.

Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.   

Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова. 

Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.   

Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.    

Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde.

Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.   

Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.    

Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.      

Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.    

В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.   

Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.     

Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.    

Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.      

В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.    

Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.    

В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию.

Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["PDF_RU"]=> array(36) { ["ID"]=> string(2) "43" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF RUS" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_RU" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "43" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12452" ["VALUE"]=> string(3) "558" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "558" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF RUS" ["~DEFAULT_VALUE"]=> string(0) "" } ["PDF_EN"]=> array(36) { ["ID"]=> string(2) "44" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF ENG" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "44" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12453" ["VALUE"]=> string(3) "559" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "559" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF ENG" ["~DEFAULT_VALUE"]=> string(0) "" } ["NAME_LONG"]=> array(36) { ["ID"]=> string(2) "45" ["TIMESTAMP_X"]=> string(19) "2023-04-13 00:55:00" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(72) "Название (для очень длинных заголовков)" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "NAME_LONG" ["DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "45" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(80) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(72) "Название (для очень длинных заголовков)" ["~DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } } } ["DISPLAY_PROPERTIES"]=> array(8) { ["AUTHOR_EN"]=> array(37) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12459" ["VALUE"]=> array(2) { ["TEXT"]=> string(66) "<p class="Autor">By Alexander A. Maximow</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(44) "

By Alexander A. Maximow

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(44) "

By Alexander A. Maximow

" } ["SUMMARY_EN"]=> array(37) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12457" ["VALUE"]=> array(2) { ["TEXT"]=> string(1072) "<p> Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909. </p> <p class="bodytext"> Translated from: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking. <br> <br> Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.<br> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(980) "

Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909.

Translated from: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking.

Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(980) "

Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909.

Translated from: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking.

Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.

" } ["DOI"]=> array(37) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12449" ["VALUE"]=> string(29) "10.3205/ctt-2009-en-000032.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2009-en-000032.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(29) "10.3205/ctt-2009-en-000032.01" } ["NAME_EN"]=> array(37) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12450" ["VALUE"]=> string(132) "The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(132) "The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(132) "The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals" } ["AUTHORS"]=> array(38) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12480" } ["VALUE"]=> array(1) { [0]=> string(3) "900" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "900" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(63) "Alexander A. Maximow" ["LINK_ELEMENT_VALUE"]=> bool(false) } ["AUTHOR_RU"]=> array(37) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12447" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">Проф. А. Максимов</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

Проф. А. Максимов

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(51) "

Проф. А. Максимов

" } ["SUMMARY_RU"]=> array(37) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12448" ["VALUE"]=> array(2) { ["TEXT"]=> string(1297) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <p class="bodytext"> Переведено с: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Перевод: Чухловин А. Б., Неворотин А. И. <br> </p> <p> Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов. </p> <br>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(1199) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Переведено с: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Перевод: Чухловин А. Б., Неворотин А. И.

Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов.


" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(1199) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Переведено с: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Перевод: Чухловин А. Б., Неворотин А. И.

Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов.


" } ["FULL_TEXT_RU"]=> array(37) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12451" ["VALUE"]=> array(2) { ["TEXT"]=> string(49803) "<p class="bodytext"> Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области <em>area opaca</em>. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах. <br> <br> Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.<br> <br> Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.<br> <br> Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в <em>area vasculosa</em>. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах <em>area vasculosa</em>, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.<br> <br> Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами. <br> <br> Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку. <br>     <br> Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.   <br>    <br> Сосудистая сеть <em>area vasculosa</em> является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.<br>     <br> В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.<br>      <br> Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах <em>area vasculosa</em>. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.<br>      <br> Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам <em>area vasculosa</em>, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.<br>     <br> Так  же, как лимфоциты в сосудах <em>area vasculosa</em>, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу.  <br>      <br> Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам <em>area vasculosa</em>, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из <em>area vasculosa</em>. <br>     <br> Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети <em>area vasculosa</em>. Однако часть их все же поступает в кровоток. <br>       <br> Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму <em>septum transversum</em>, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.<br>      <br> Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.<br>       <br> До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному. <br>       <br> Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.<br> <br> Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.<br>     <br> Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты. </p> <p class="align-center"> __________ </p> <p class="bodytext"> Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.   </p> <p class="align-center"> __________ </p> <p class="bodytext"> Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты. <br> <br> Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.    <br> <br> Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова.  <br> <br> Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.    <br> <br> Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.     <br> <br> Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde. <br> <br> Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.    <br> <br> Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.     <br> <br> Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.       <br> <br> Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.     <br> <br> В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.    <br> <br> Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.      <br> <br> Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.     <br> <br> Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.       <br> <br> В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.     <br> <br> Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.     <br> <br> В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию. <br> <br> <b>Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)</b> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(49117) "

Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области area opaca. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах.

Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.

Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.

Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в area vasculosa. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах area vasculosa, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.

Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами.

Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку.
   
Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.  
  
Сосудистая сеть area vasculosa является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.
   
В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.
    
Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах area vasculosa. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.
    
Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам area vasculosa, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.
   
Так  же, как лимфоциты в сосудах area vasculosa, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу. 
    
Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам area vasculosa, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из area vasculosa.
   
Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети area vasculosa. Однако часть их все же поступает в кровоток.
     
Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму septum transversum, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.
    
Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.
     
До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному.
     
Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.

Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.
   
Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты.

__________

Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.  

__________

Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты.

Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.   

Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова. 

Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.   

Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.    

Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde.

Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.   

Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.    

Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.      

Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.    

В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.   

Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.     

Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.    

Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.      

В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.    

Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.    

В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию.

Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(49117) "

Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области area opaca. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах.

Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.

Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.

Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в area vasculosa. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах area vasculosa, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.

Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами.

Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку.
   
Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.  
  
Сосудистая сеть area vasculosa является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.
   
В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.
    
Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах area vasculosa. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.
    
Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам area vasculosa, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.
   
Так  же, как лимфоциты в сосудах area vasculosa, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу. 
    
Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам area vasculosa, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из area vasculosa.
   
Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети area vasculosa. Однако часть их все же поступает в кровоток.
     
Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму septum transversum, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.
    
Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.
     
До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному.
     
Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.

Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.
   
Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты.

__________

Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.  

__________

Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты.

Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.   

Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова. 

Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.   

Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.    

Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde.

Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.   

Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.    

Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.      

Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.    

В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.   

Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.     

Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.    

Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.      

В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.    

Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.    

В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию.

Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)

" } } } [1]=> array(49) { ["IBLOCK_SECTION_ID"]=> string(2) "37" ["~IBLOCK_SECTION_ID"]=> string(2) "37" ["ID"]=> string(3) "902" ["~ID"]=> string(3) "902" ["IBLOCK_ID"]=> string(1) "2" ["~IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["~NAME"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ACTIVE_FROM"]=> NULL ["~ACTIVE_FROM"]=> NULL ["TIMESTAMP_X"]=> string(19) "16.06.2017 15:16:30" ["~TIMESTAMP_X"]=> string(19) "16.06.2017 15:16:30" ["DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/" ["~DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/" ["LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["~LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["DETAIL_TEXT"]=> string(28886) "

Die ersten Blutelemente entstehen bekanntlich aus den sog. Blutinseln, aus unregelmäßig begrenzten, miteinander netzartig verbundenen Zellansammlungen des peripheren mesenchymatösen Mesoblasts, im Bereiche der Area opaca. Die peripherischen Zellen der Blutinseln platten sich ab, werden zu Endothelzellen, die inneren runden sich ab und schwimmen als die ersten Blutzellen frei in einer Flüssigkeit, die man Blutplasma nennen kann. Ich habe nun gefunden, dass diese primitiven Blutzellen, wie ich sie nenne, keineswegs Erythroblasten vor­stellen, wie es nach der geläufigen Vorstellung sein sollte, sondern vollkommen indifferente Elemente, mit rundem hellem Kern und schmalem basophilem Proto­plasma; es sind weder rote, noch weiße Blutkörperchen; eher dürften sie noch weiße Blutkörperchen genannt werden, da sie manchmal, besonders z. B. beim Hühnchen, sofort amöboid und den großen Lymphozyten sehr ähnlich sind. Sie wuchern weiter, in der ersten Zeit vergrößert sich ihre Zahl auch noch durch Ablösung der Endothelzellen in den primitiven Gefäßen.

Nach einiger Zeit bemerkt man dann, wie sich diese primitiven Blutzellen in zwei Zellarten spalten. Die einen, die meisten, arbeiten im Protoplasma Hämo­globin aus und werden dadurch zu den sog. primitiven Erythroblasten. Es sind große, wuchernde, zuletzt sehr hämoglobinreiche Zellen mit relativ kleinen Kernen. Sie dienen dem Organismus lange Zeit, sterben aber allmählich aus und werden von den definitiven Erythroblasten und Erythrozyten verdrängt.

Der andere Teil der primitiven Blutzellen bleibt hämoglobinlos – es sind jetzt Zellen mit großem hellem nukleolenhaltigem Kern, schmalem, amöboidem, stark basophilem Plasmasaum; histologisch entsprechen sie vollkommen dem Be­griff der großen Lymphozyten. Es sind die ersten Leukozyten des Embryo, die also als Lymphozyten erscheinen.

Nun sehen wir im folgenden, wie diese intravaskulären Lymphozyten in der Area vasculosa zum Ausgangspunkt der Erythropoese werden. Sie erzeugen durch heteroplastische Wucherung sekundäre Erythroblasten; zuerst erscheinen hellkernige, kleinere oder größere Megaloblasten; die späteren Generationen nähern sich immer mehr und mehr dem Normoblastentypus, und schließlich be­kommen wir in den Gefäßen der Area vasculosa in buntem Durcheinander primi­tive, sehr hämoglobinreiche Erythroblasten, basophile Lymphozyten und große Mengen von haufenweise gelagerten, wuchernden Megaloblasten und Normoblasten.

Trotz der Erzeugung von Erythroblasten dürfen aber die Lymphozyten selbst doch keineswegs als Erythroblasten bezeichnet werden; denn sie geben schon im Dottersack außer hämoglobinhaltigen Zellen auch Megakaryozyten und verschie­denen anderen Elementen Ursprung, die mit roten Blutkörperchen nichts zu tun haben.

Diese sekundären Erythroblasten sind von den primitiven scharf getrennt und unterscheiden sich von ihnen sofort durch ihren kleineren Umfang und durch den besonders in den Normoblasten kleineren dunkleren Kern, Schließlich wird dieser Kern pyknotisch und verlässt in degeneriertem Zustand die Zelle.

Ich streife hier absichtlich die Frage der Entkernung der Erythroblasten, weil sie sich mir heutzutage in einem Zustande zu befinden scheint, der dem verfügbaren Tatsachenmaterial nicht entspricht. Ich finde, dass alle bekannten Tatsachen für eine Kernausstoßung sprechen und keine dagegen; für den intra­zellulären Kernschwund liegen hingegen keine direkten Beweise vor – ich meine dabei die normale Blutbildung. Wenn man, wie es z. B, gerade in den hämo­globinreichen primitiven Erythroblasten der Fall ist, oft blasse Kernschatten zu sehen bekommt, so hängt das doch nur davon ab, dass die basische Farbe durch den dicken Hämoglobinmantel nicht durchdringen kann. Sobald aber der Kern heraustritt, färbt er sich sofort dunkel.

Das Gefäßnetz der Area vasculosa ist also das erste blutbildende Organ bei dem Säugetierembryo. Hier entstehen Lymphozyten, Erythrozyten und Megakaryozyten, aber niemals Granulozyten.

Während sich die beschriebenen Prozesse in den außerembryonalen Teilen abspielen, bemerkt man im Körpermesenchym, welches zuerst ganz und gar frei von Wanderzellen ist, schon in sehr frühen Stadien, z. B. bei Kaninchen und Meerschweinchen von 4–5 mm Länge, das Erscheinen der ersten freien Wander­zellen, Sie entstehen durch Abrundung und Isolierung ans den gewöhnlichen, in­differenten, ästigen Mesenchymzellen.

Die ersten Wanderzellen sind im allgemeinen lymphozytenähnlich, das heißt, sie sehen meistens genau so aus, wie die Lymphozyten in den Gefäßen der Area vasculosa. Gleich beim ersten Erscheinen, noch mehr in den etwas späteren Sta­dien, sieht man aber überall im Mesenchym auch Wanderzellen anderer Art auf­treten, z. B. Zellen mit blassem, amöboidem, oft vakuolärem Plasma und kleinen, unregelmäßig gefalteten, hellen oder dunklen Kernen. Die WanderzelIen im Mesenchym sind also sehr mannigfaltig, sehr polymorph, und zwischen allen ihren Formen bestehen Übergänge. Diese histologischen Unterschiede haben auch keine besondere Bedeutung, denn die Grundeigenschaft der Zellen, ihre progressive Ent­wicklungspotenz, bleibt immer unverändert, und alle Wanderzellen des Mesenchyms sind gleichwertig.

Das wichtigste ist aber, dass die Wanderzellen des Mesenchyms auch mit den intravaskulären und im Blute zirkulierenden Lymphozyten der Area vasculosa in morphologischer und physiologischer Beziehung ebenfalls identisch sind; beide sind freie amöboide, indifferente Mesenchymzellen, obwohl diese Zellen, je nach den äußeren Bedingungen, in denen sie sich befinden, sehr verschieden aussehen können.

Wie die Lymphozyten in den Gefäßen der Area vasculosa Erythroblasten und Megakaryozyten erzeugen, so geschieht dies auch an vielen Stellen im Mesenchym. Im Mesenchym kann aber die differenzierende Entwicklung der Wanderzellen oder der Lymphozyten noch weitergehen – ein Teil von ihnen verwandelt sich hier in granulierte Myelozyten und Leukozyten. Meistens entstehen dabei sofort polymorphkernige, kleine, abortive Leukozyten, die im Gewebe einzeln zer­streut liegen und bald degenerieren oder gefressen werden.

Was die Identität der mesenchymatischen Wanderzellen mit den intravaskulären Lymphozyten der Area vasculosa noch weiter beweist, ist die Tatsache, dass das Endothel gewisser Gefäße, vor allem der Aorta, in gewissen Stadien und an bestimmten Stellen intensiv wuchert, wobei große Zellhaufen entstehen, die in das Lumen hineinragen, vom Blut weggespült werden und sich als echte Lympho­zyten dem zirkulierenden Blute beimischen. Sie können hier von den aus der Area vasculosa stammenden Lymphozyten gar nicht unterschieden werden.

Hier möchte ich gleich auch eine kurze Bemerkung über das zirkulierende Blut machen. Trotz der hergebrachten Meinung ist es Tatsache, dass weiße Blutkörperchen, und zwar große Lymphozyten, schon von den allerfrühesten Ent­wicklungsstadien an im Blute existieren, und zwar in bedeutender Menge. Die meisten Lymphozyten werden natürlich als Erzeuger der Erythroblasten im blut­bildenden Gefäßnetz der Aren vasculosa zurückgehalten, Aber ein Teil geht doch immer in die Zirkulation über.

Das zweite Blutbildungsorgan des Säugetierembryos ist die Leber. Zwischen den Leberzellen, extravaskulär, werden hier bekanntlich Erythrozyten, Megakaryozyten und Granulozyten gebildet. Es fragt sich nun, wo ist der Ausgangspunkt dieser Hämatopoese zu suchen? Wenn man passende Stadien untersucht, findet man, dass zuerst zwischen den Leberzellen und dem Gefäßendothel Wanderzellen auftreten, die ganz so aussehen, wie die Wanderzellen im übrigen Körpermesenchym; zum Teil sind sie lymphozytenähnlich, zum Teil kleinkernig und blass. Wenn wir noch weiter zurückgehen und die Stadien untersuchen, wo die Leber­zellenstränge in das Mesenchym des Septum transversum einwuchern, so gewinnen wir die Überzeugung, dass sich die Wanderzellen aus diesem Mesenchym ableiten lassen. Die Mesenchymzellen gelangen als solche, oder schon als Wanderzellen, zwischen die Leberzellen und die Endothelwände der ebenfalls wuchernden Gefäße. Hier bleiben sie zunächst eine kurze Zeit unverändert. Bald entfalten sie aber eine erstaunliche Entwicklungsfähigkeit. Die Wanderzellen verwandeln sich zunächst zum größten Teil in wuchernde große Lymphozyten, die große Mengen von Erythroblasten und Erythrozyten produzieren. Ein kleinerer Teil verwandelt sich in Granulozyten und Megakaryozyten. Also sehen wir auch in der Leber dieselbe indifferente wandernde Mesenchymzelle, den Lymphozyt, zum Ausgangs­punkt der Hämatopoese werden. Sie findet zwischen den Leberzellen sehr günstige Existenzbedingungen, wuchert und erzeugt die verschiedensten Blutelemente.

Das dritte endgültige Blutbildungsorgan, welches die Leber ablöst, ist das Knochenmark. Auch seine Entstehung habe ich von Anfang an verfolgt. Auch hier sehen wir nun wieder, dass sich in dem jungen, indifferenten Mesenchym, welches in den Knorpel eindringt und ihn resorbiert, ein Teil der fixen Zellen in WanderzelIen verwandelt, die auch zuerst äußerst polymorph aussehen. Auch hier erlangen sie zuletzt fast alle das Aussehen von typischen Lymphozyten, und diese werden wieder zum Ausgangspunkte der Blutbildung, die eigentlich ebenso verläuft wie in der Leber und ebenso wie dort extravaskulär geschieht, zum Unterschied von der Leber aber für das ganze Leben bleibt. Die Lymphozyten erzeugen auch hier durch differenzierende Wucherung Erythroblasten, Megakaryozyten und Granulozyten der verschiedenen 3 Arten. Ein Teil von ihnen aber produziert auch ihresgleichen, d.h. typische ungranulierte Lymphozyten, d.h. funktioniert nicht nur myeloblastisch, sondern gleichzeitig auch lymphoblastisch.

Bis jetzt haben wir eigentlich bei der Blutbildung nur die Elemente des sog. myeloiden Gewebes entstehen sehen – Erythrozyten, Megakaryozyten und Granulozyten. Man könnte nun sagen, und Schridde sagt es auch tatsächlich, dass die Zellen, die ich bisher Lymphozyten nannte, gar keine solchen sind, sondern Myeloblasten. Die von mir beobachteten Elemente entsprechen zwar histologisch vollkommen den Lymphozyten, aber man könnte einwenden, dass nur die­jenigen Zellen als Lymphozyten oder Lymphoblasten zu bezeichnen wären, aus denen nachgewiesenermaßen typische kleine Lymphozyten entstehen. Solche Zellen, also die echten Lymphoblasten, sollen aber nach Schridde erst viel später auf­treten und auch ganz anders aussehen.

Schon von den frühesten Stadien an können nun allerdings einzelne Exem­plare der beschriebenen Wanderzellen typischen kleinen Lymphozyten mehr oder weniger ähnlich sein, aber es ist wahr, dass die letzteren in großen Mengen im Organismus erst relativ spät entstehen. Im Knochenmark sehen wir schon ziemlich häufig, und je später je zahlreicher, viele von den Nachkommen der wuchernden Großlymphozyten das entsprechende Aussehen annehmen. In besonders großen Mengen erscheinen aber die kleinen Lymphozyten in der Thymus. Auch über dieses Organ muss ich hier folglich einiges sagen. Die Kenntnis der Thymushistogenese ist sehr wichtig für die einheitliche Auffassung der Bedeutung der Lymphozyten im Organismus.

Zuerst ist die Thymus rein epithelial. Daun erscheinen in ihrer Umgebung, schon sehr früh, im Mesenchym zahlreiche Wanderzellen von verschle­iern Aussehen, ebenso wie an den anderen Körperstellen; zum Teil sind es wieder große Lymphozyten, zum Teil blasse kleinkernige Wanderzellen. Alle diese amöboiden Zellen wandern nun in die epitheliale Anlage ein und verwandeln sich hier in kürzester Zeit sämtlich in typische große Lymphozyten. Also eigent­lich zuerst dasselbe, wie in der Leber; die ersten Lymphozyten der Thymus sind zweifellos morphologisch die selben Zellen, wie die ersten Granulozyten bildenden Lymphozyten in der Leber. Nur sind die Existenzbedingungen für diese Zellen hier augenscheinlich ganz andere wie dort, denn die Lymphozyten in der Thymus erzeugen, obwohl sie äußerst stark wuchern, niemals Erythroblasten und nur sehr spärliche Granulozyten, sondern immer nur ihresgleichen. Sie infiltrieren bald das ganze Organ; mit der Wucherung werden sie immer kleiner und kleiner, und schließlich bekommt man unzählige Mengen typischer kleiner Lymphozyten, die ins Blut ausgeschwemmt werden.

Was die Lymphknoten anbetrifft, so sieht man bei ihrer ersten Ent­stehung wieder die Verwandlung kleiner, dichtgedrängter, indifferenter Mesenchymzellen in kleine amöboide Wanderzellen. Auch hier tritt wieder von Anfang an die starke Polymorphie dieser Wanderzellen hervor; es können sofort einzelne große Lymphozyten entstehen, meistens bekommt man aber zuerst ganz kleine, obzwar hellkernige, protoplasmaarme amöboide Elemente. Sie wuchern, verwandeln sich dabei zum Teil in typische dunkelkernige kleine Lymphozyten und gelangen in die Lymphspalten. Andererseits sieht man sie sich aber gelegentlich auch in große, sogar riesige Lymphozyten verwandeln, die dann weiter, ebenso wie in der Thymus, wieder kleine Lymphozyten liefern können. Es muss also mit Bestimmt­heit hervorgehoben werden, dass zur Erzeugung typischer kleiner Lymphozyten beim Embryo große Lymphozyten gar nicht unbedingt notwendig sind.

__________

Die Untersuchung der fötalen Blutbildung lehrt uns also, dass man Myelo-blasten und Lymphoblasten nicht unterscheiden kann. Es existiert eine einzige Zellart, eine ubiquitäre, indifferente, polymorphe, wandernde Mesenchymzelle, die je nach den verschiedenen Bedingungen, in denen sie sich befindet, verschieden aussieht uud verschienene Differenzierungsprodukte liefern kann. Auch rein histologisch sind beim Embryo Lympho­blasten und Myeloblasten nicht zu trennen.

__________

Bei Betrachtung der Blutbildung im erwachsenen Organismus von dem uns jetzt interessierenden Standpunkt wären vor allem 2 Fragen zu lösen, die sich auf die ungranulierten Zellen beziehen.

Die erste betrifft die Wechselbeziehungen der großen und kleinen Lymphozyten. Diese beiden Begriffe sind geschaffen worden auf Grund von Untersuchungen die am erwachsenen Organismus ausgeführt wurden. Die geläufige Vor­stellung ist nun die, dass die kleinen Lymphozyten durch Wucherung aus den großen in den Keimzentren entstehen, selbst aber nicht weiter vermehrungsfähig sind und sich namentlich nicht wieder in große Lymphozyten zurückverwandeln können.

Nun glaube ich mich auf Grund meiner Untersuchungen auf einen anderen Standpunkt stellen zu müssen. Die kleinen Lymphozyten entstehen im erwachse­nen Organismus in der Tat meistens durch Wucherung größerer Zellen. Un­mittelbar nach ihrer Entstehung sind sie während einer Zeit lang in der Tat der Wucherung nicht fällig, Wahrscheinlich hängt dieser Zustand von der besonderen, durch die intensive vorherige Wucherung herbeigeführten Kernplasmarelation ab. Dass diese reifen kleinen Lymphozyten aber weiter entwicklungsfähig sind, das halte ich für absolut sicher. Sie gelangen ins Blut und zirkulieren und wenn sie passenden Bedingungen begegnen, dann können sie wieder als vollwertige indifferente Mesenchymzellen zum Ausgangspunkt verschiedenartiger Entwicklungs­prozesse werden; sie können sieh sogar sicherlich wieder durch Hypertrophie in teilungsfähige Großlymphozyten verwandeln. Der Sinn der merkwürdigen Er­scheinung, dass im erwachsenen Organismus die Lymphozyten zum größten Teil das Stadium der kleinen, während einer gewissen Periode der Wucherung un­fähigen Zelle passieren müssen, liegt, wie ich glaube, in dem Umstand, dass die Zellen in diesem Zustand der kleinen Lymphozyten besonders leicht in dem Blut- und Lymphstrom transportiert werden und überall, in alle Organe und Ge­webe gelangen können. Dieser Gedanke ist neulich auch von Weidenreich ausgesprochen worden.

Die kleinen und die großen Lymphozyten sind also bloß vorübergehende Zustände im Leben ein und derselben Zellart, des Lymphozyten im weitesten Sinne des Wortes.

Die zweite Frage betrifft die Unterscheidung von besonderen Lymphoblasten und Myeloblasten im erwachsenen Organismus. Wenn diese Unterscheidung beim Embryo, wie wir gesehen haben, keine Berechtigung hat, so braucht man daraus noch nicht a priori auch auf ihre Unmöglichkeit beim erwachsenen Orga­nismus zu schließen. Eine ganze Reihe von Autoren, mit Schridde an der Spitze, behauptet auch, dass die ungranulierten Zellen im lymphoiden Gewebe einer-, im myeloiden andererseits nicht dieselben Großlymphozyten, sondern zwei verschiedene Zellarten, Lymphoblasten und Myeloblasten, sind.

Über die artliche Identität zweier Zellarten müssen natürlich erstens die histologischen Merkmale und zweitens die physiologischen Eigenschaften, speziell die prospektiven Entwicklungspotenzen entscheiden.

Was nun die histologischen Charaktere der beiden Zellarten betrifft, so ließ ich in meinem Laboratorium den Herrn Dr. S. Tschaschin die von Schridde angegebenen Unterschiede genau prüfen.

Soviel sich nach den bisher erlangten Resultaten urteilen lässt, gelingt es allerdings schon bei neugeborenen Tieren in den meisten Fällen gewisse Unter­schiede zu bemerken, die jedoch von sehr geringfügiger Natur sind. Die Lymphoblasten besitzen einen im allgemeinen schmaleren, homogeneren Protoplasmasaum, während im Kern die Nukleolen größer und in der Regel sehr tief gefärbt er­scheinen. Die sogenannten Myeloblasten besitzen meistens, obwohl nicht immer, einen breiteren Protoplasmasaum von mehr lockerem, retikulärem Gefüge; seine Basophilie schwankt in den weitesten Grenzen. Der Kern enthält stets Nukleolen, sie sind aber kleiner und färben sich nicht so distinkt. Überhaupt er­scheinen die Myeloblasten viel polymorpher, als die Lymphoblasten, und die unter den Myeloblasten selbst bestehenden Unterschiede sind oft größer, als die Unterschiede zwischen den Myeloblasten und Lym­phoblasten.

Speziell wurde auch die Altmann-Schriddesche Färbung angewandt, die von Schridde als das wichtigste Mittel zur Unterscheidung bezeichnet wird, und es hat sieh ergeben, dass die großen, bei den Eosin-Azur-Färbungen granulalosen Zellen im adenoiden Gewebe und im Knochenmark, also die Schriddeschen Lymphoblasten und Myeloblasten in beiden Fällen sowohl granulahaltig, als auch granulaarm oder granulalos sein können; meistens enthalten sie Hur wenige Granula. Also im Gegensatz zu Schridde, nach welchem die Lymphoblasten immer, die Myeloblasten niemals Granula enthalten sollen. Die kleinen und mittleren Lymphozyten enthalten hingegen immer sehr deutliche zahlreiche Körner. Ebenso färben sieh die Spezialkörnchen und die eosinophilen Körner mit. Die Methode gibt überhaupt ganz dieselben Bilder, wie die altbekannte ursprüngliche von AItmann, und zu Untersuchungen über Blutzellen erscheint sie mir gerade besonders wenig geeignet. Die verschiedenen Färbungsnüancen, auf die sich Schridde be­ruft, können natürlich nicht ernsthaft für die Unterscheidung bestimmter Zellarten in Anspruch genommen werden. Es versteht sich von selbst, dass alle diese Granulabilder überhaupt keine besondere Bedeutung haben können; denn dass in ein und derselben Zelle je nach ihrem Funktionszustand Granula, selbst wenn sie intravital existieren sollten, neu auftreten und wieder vergehen können, ist wohl über alle Zweifel erhaben.

Wenn also gewisse, wenig konstante und schwer zu definierende histologische Unterschiede auch vorhanden sind, so muss man andererseits bedenken, dass die Zellen in den Lymphknoten und im Mark sich ja sicherlich in ganz verschiedenen Medien befinden; die histologischen Unterschiede könnten schon dadurch allein ge­nügend erklärt werden. Außerdem sehen wir ja, dass sich die Lymphozyten schon von den ersten embryonalen Stadien an durch äußerste Polymorphie aus­zeichnen, obwohl sie trotzdem alle vollkommen gleichwertig sind. Die histo­logischen Unterschiede allein berechtigen uns also nicht zur scharfen Trennung der Lymphoblasten und Myeloblasten. Diese Trennung wäre erst möglich, wenn es gelingen würde, zu beweisen, dass die einen Zellen in die anderen niemals übergehen können und dass die Differenzierungsprodukte der beiden unter allen möglichen Bedingungen ganz verschiedene sind.

Diese physiologischen oder vielmehr die produktiven zytogenetischen Eigenschaften unserer Zellen wollen wir jetzt näher betrachten. Wenn die Lymphozyten des adenoiden Gewebes und die Lymphozyten des Markes gleichwertige Zellen sind und normal verschiedene Differenzierungsprodukte nur aus dem Grunde geben, weil sie sich in verschiedenen Existenzbedingungen befinden, so müsste man versuchen, für die Lymphozyten des adenoiden Gewebes, also für die ver­meintlichen Lymphoblasten, solche Bedingungen künstlich zu schaffen, dass sie sich zu Granulozyten und Erythroblasten differenzieren könnten. Es ist ja be­kannt, dass bei verschiedenen Gelegenheiten im adenoiden Gewebe myeloide Trans­formation eintreten kann. Es kann jetzt auch als allgemein bewiesen gelten, dass die letztere dabei von autochthonen Elementen ausgeht. Es fragt sich nur, welche Zellen kommen dabei in Betracht? Es sind bekanntlich nicht die Keimzentrumszellen, die sich in Myelozyten und Erythroblasten verwandeln – sondern dies geschieht mit Zellen, die in den Marksträngen der Lymphknoten und in der roten Milzpulpa liegen. Die Dualisten erblicken nun gerade darin einen Beweis für die Richtigkeit ihrer Anschauungen; nach ihnen sollen es besondere, von den Lymphoblasten ganz verschiedene, latent schon früher dagewesene Myeloblasten sein, die sich dabei in myeloide Elemente verwandeln, oder direkt die Gefäßwandzellen. Andere nehmen wieder an, dass dabei besondere adventitielle indiffe­rente Mesenchymzellen zum Ausgangspunkt der Transformation werden.

In meinem Laboratorium ließ ich durch Frau Dr. H. Babkin an Tieren besondere Experimente machen, um der Lösung dieser Frage etwas näher zu treten. In der Milz gelang es sehr leicht, einen Teil der myeloiden Umwandlung, nämlich die Bildung von Myelozyten und Megakaryozyten hervorzurufen – es genügt dazu, einen aseptischen Fremdkörper in das Milzgewebe einzuführen – in seiner Umgebung bekommt man sehr bald zahlreiche Myelozyten und Megakaryozyten. In den Lymphknoten gelang es hingegen vorläufig nicht, mit dieser und ähnlichen Methoden myeloide Verwandlung auszulösen. Auch in der Milz blieben die Malpighischen Körperchen unverändert – die Myelozyten entstanden immer nur in der roten Pulpa und in den Venensinus.

Diese Experimente scheinen ebenfalls auf den ersten Bück für die Verschiedenheit der Lymphoblasten und Myeloblasten zu sprechen. Indessen glaube ich doch nicht, dass ihre vorläufigen Resultate so zu deuten wären. Wir müssen bedenken, dass im adenoiden Gewebe ganz besondere Bedingungen herrschen müssen, die diese Bezirke vor allen anderen Körperteilen gerade für die homo­plastische Vermehrung der indifferenten Mesenchymzellen, der Lymphozyten, ge­eignet erscheinen lassen. In diesen Brutstätten fehlen normal vollständig die Vorbedingungen für die myeloide Verwandlung der Lymphozyten. Diese beiden Arten von Bedingungen, die für die homoplastische Wucherung in unverändert indifferentem Zustande einerseits und die für die heteroplastische, differenzierende myeloiden Elementen andererseits nötigen, sind augenscheinlich im erwachsenen Organismus miteinander nicht zu vereinigen, und deswegen gelingt es auch nicht auf künstlichem Wege, die Keimzentrumszellen und die jungen kleinen Lymphozyten an Ort und Stelle ihrer Entstehung zu veranlassen, direkt in Granulozyten und Erythroblasten überzugehen. Wo die myeloide Verwandlung beginnt, hört andererseits bekanntlich die homoplastische Wucherung auf und verschwinden die Keimzentren. 

Wahrscheinlich ist auch die Jugendlichkeit der weitaus größten Mehrzahl der Lymphozyten im adenoiden Gewebe an und für sich schon selbst ein Hinder­nis für ihre myeloide Verwandlung; für diese Zellen muss vielleicht eine gewisse Zeit verstreichen, ehe sie der myeloiden Differenzierung fähig werden, und außerdem müssen sie dazu in besondere, entsprechende Existenzbedingungen geraten; es kann vermutet werden, dass z. B. die Zirkulation im Blutstrom die ans dem adenoiden Gewebe stammenden Lymphozyten zur myeloiden Verwandlung besonders geeignet macht.

Wenn das alles indirekte, vielleicht zweifelhafte Beweise für die Gleich­wertigkeit der Lymphozyten des lymphoiden und myeloiden Gewebes in Bezug auf ihre prospektive Entwicklungspotenz im erwachsenen Organismus sind, so exi­stiert, wie ich glaube, noch ein anderer direkter Beweis, der indessen vorläufig, meiner Meinung nach, von den verschiedenen Autoren, die über heterotrope Bildung myeloiden Gewebes geschrieben haben, zu wenig beachtet wurde.

Ich habe nämlich seinerzeit die Histogenese des myeloiden Gewebes studiert, welches sich in der Kaninchenniere nach Unterbindung ihrer Hauptgefäße ent­wickelt. Dies Objekt ist besonders in der Beziehung günstig, dass ja in dem spärlichen Stroma der Niere in der Norm schon sicherlich keinerlei lymphoide Elemente existieren. Es hat sich herausgestellt, dass dabei alle Knochenmark­elemente, Granulozyten, Megakaryozyten und Erythroblasten aus den Lymphozyten des zirkulierenden Blutes entstehen, also aus Zellen, die ja nachgewiesenermaßen aus dem adenoiden Gewebe mit seinen Keimzentren stammen. Die kleinen Lymphozyten des Blutes verwandeln sich dabei wieder in große Lymphozyten und wandern in das Gewebe als kleine oder schon als große Zellen aus. Noch innerhalb der Gefäße oder erst nach der Auswanderung bilden sie dann durch Granulaanhäufung im Plasma Myelozyten, durch Hämoglobinausarbeitung Erythro­blasten. Eigentliche Myeloblasten pflegen im normalen Blut doch wohl nicht vor­banden zu sein, obwohl K. Ziegler die großen mononukleären Leukozyten für solche dauernd indifferente und entwicklungsfähige Zellen erklärt. Aber auch diese entstehen nach neueren Untersuchungen aus den banalen kleinen Lymphozyten.

Ich glaube annehmen zu können, dass, wenn beim Menschen myeloides Ge­webe heterotrop entsteht, dies vielleicht auch auf Kosten der ja überall vorhandenen Lymphozyten des zirkulierenden Blutes oder der ihnen vollständig gleichwertigen Lymphozyten des Bindegewebes und des adenoiden Gewebes geschehen könnte, nicht auf Kosten latenter Myeloblasten, oder problematischer wuchernder Adventitiazellen oder Gefäßwandzellen.

Alles in allem komme ich folglich zum Schluss, dass auch für den er­wachsenen Organismus kein Grund vorliegt, die Existenz von zwei scharf getrennten Zellarten, der Myeloblasten und Lymphoblasten, anzuerkennen. Im Säuge­tierorganismus existiert eine Zellart, der Lymphozyt im weitesten Sinne des Wortes, die je nach dem Ort ihres Aufenthaltes, je nach den Existenzbedingungen, verschieden aussehen und verschiedene Differenzierungsprodukte liefern kann. Die Lymphozyten sind ubiquitär, überall gleichwertig, histogene und hämatogene können nicht unterschieden werden. Im adenoiden Gewebe erzeugen sie durch homoplastische Wucherung nur immer wieder Lymphozyten. Die dabei entstehende leicht transportable Form, der kleine Lymphozyt, zirkuliert mit dem Blut- und Lymphstrom überall im Organismus und erlangt nach einer gewissen Periode der Inaktivität bald wieder die volle Entwicklungsfähigkeit.

Originally published in: Folia Haematologica 8.1909, 125-134.

" ["~DETAIL_TEXT"]=> string(28886) "

Die ersten Blutelemente entstehen bekanntlich aus den sog. Blutinseln, aus unregelmäßig begrenzten, miteinander netzartig verbundenen Zellansammlungen des peripheren mesenchymatösen Mesoblasts, im Bereiche der Area opaca. Die peripherischen Zellen der Blutinseln platten sich ab, werden zu Endothelzellen, die inneren runden sich ab und schwimmen als die ersten Blutzellen frei in einer Flüssigkeit, die man Blutplasma nennen kann. Ich habe nun gefunden, dass diese primitiven Blutzellen, wie ich sie nenne, keineswegs Erythroblasten vor­stellen, wie es nach der geläufigen Vorstellung sein sollte, sondern vollkommen indifferente Elemente, mit rundem hellem Kern und schmalem basophilem Proto­plasma; es sind weder rote, noch weiße Blutkörperchen; eher dürften sie noch weiße Blutkörperchen genannt werden, da sie manchmal, besonders z. B. beim Hühnchen, sofort amöboid und den großen Lymphozyten sehr ähnlich sind. Sie wuchern weiter, in der ersten Zeit vergrößert sich ihre Zahl auch noch durch Ablösung der Endothelzellen in den primitiven Gefäßen.

Nach einiger Zeit bemerkt man dann, wie sich diese primitiven Blutzellen in zwei Zellarten spalten. Die einen, die meisten, arbeiten im Protoplasma Hämo­globin aus und werden dadurch zu den sog. primitiven Erythroblasten. Es sind große, wuchernde, zuletzt sehr hämoglobinreiche Zellen mit relativ kleinen Kernen. Sie dienen dem Organismus lange Zeit, sterben aber allmählich aus und werden von den definitiven Erythroblasten und Erythrozyten verdrängt.

Der andere Teil der primitiven Blutzellen bleibt hämoglobinlos – es sind jetzt Zellen mit großem hellem nukleolenhaltigem Kern, schmalem, amöboidem, stark basophilem Plasmasaum; histologisch entsprechen sie vollkommen dem Be­griff der großen Lymphozyten. Es sind die ersten Leukozyten des Embryo, die also als Lymphozyten erscheinen.

Nun sehen wir im folgenden, wie diese intravaskulären Lymphozyten in der Area vasculosa zum Ausgangspunkt der Erythropoese werden. Sie erzeugen durch heteroplastische Wucherung sekundäre Erythroblasten; zuerst erscheinen hellkernige, kleinere oder größere Megaloblasten; die späteren Generationen nähern sich immer mehr und mehr dem Normoblastentypus, und schließlich be­kommen wir in den Gefäßen der Area vasculosa in buntem Durcheinander primi­tive, sehr hämoglobinreiche Erythroblasten, basophile Lymphozyten und große Mengen von haufenweise gelagerten, wuchernden Megaloblasten und Normoblasten.

Trotz der Erzeugung von Erythroblasten dürfen aber die Lymphozyten selbst doch keineswegs als Erythroblasten bezeichnet werden; denn sie geben schon im Dottersack außer hämoglobinhaltigen Zellen auch Megakaryozyten und verschie­denen anderen Elementen Ursprung, die mit roten Blutkörperchen nichts zu tun haben.

Diese sekundären Erythroblasten sind von den primitiven scharf getrennt und unterscheiden sich von ihnen sofort durch ihren kleineren Umfang und durch den besonders in den Normoblasten kleineren dunkleren Kern, Schließlich wird dieser Kern pyknotisch und verlässt in degeneriertem Zustand die Zelle.

Ich streife hier absichtlich die Frage der Entkernung der Erythroblasten, weil sie sich mir heutzutage in einem Zustande zu befinden scheint, der dem verfügbaren Tatsachenmaterial nicht entspricht. Ich finde, dass alle bekannten Tatsachen für eine Kernausstoßung sprechen und keine dagegen; für den intra­zellulären Kernschwund liegen hingegen keine direkten Beweise vor – ich meine dabei die normale Blutbildung. Wenn man, wie es z. B, gerade in den hämo­globinreichen primitiven Erythroblasten der Fall ist, oft blasse Kernschatten zu sehen bekommt, so hängt das doch nur davon ab, dass die basische Farbe durch den dicken Hämoglobinmantel nicht durchdringen kann. Sobald aber der Kern heraustritt, färbt er sich sofort dunkel.

Das Gefäßnetz der Area vasculosa ist also das erste blutbildende Organ bei dem Säugetierembryo. Hier entstehen Lymphozyten, Erythrozyten und Megakaryozyten, aber niemals Granulozyten.

Während sich die beschriebenen Prozesse in den außerembryonalen Teilen abspielen, bemerkt man im Körpermesenchym, welches zuerst ganz und gar frei von Wanderzellen ist, schon in sehr frühen Stadien, z. B. bei Kaninchen und Meerschweinchen von 4–5 mm Länge, das Erscheinen der ersten freien Wander­zellen, Sie entstehen durch Abrundung und Isolierung ans den gewöhnlichen, in­differenten, ästigen Mesenchymzellen.

Die ersten Wanderzellen sind im allgemeinen lymphozytenähnlich, das heißt, sie sehen meistens genau so aus, wie die Lymphozyten in den Gefäßen der Area vasculosa. Gleich beim ersten Erscheinen, noch mehr in den etwas späteren Sta­dien, sieht man aber überall im Mesenchym auch Wanderzellen anderer Art auf­treten, z. B. Zellen mit blassem, amöboidem, oft vakuolärem Plasma und kleinen, unregelmäßig gefalteten, hellen oder dunklen Kernen. Die WanderzelIen im Mesenchym sind also sehr mannigfaltig, sehr polymorph, und zwischen allen ihren Formen bestehen Übergänge. Diese histologischen Unterschiede haben auch keine besondere Bedeutung, denn die Grundeigenschaft der Zellen, ihre progressive Ent­wicklungspotenz, bleibt immer unverändert, und alle Wanderzellen des Mesenchyms sind gleichwertig.

Das wichtigste ist aber, dass die Wanderzellen des Mesenchyms auch mit den intravaskulären und im Blute zirkulierenden Lymphozyten der Area vasculosa in morphologischer und physiologischer Beziehung ebenfalls identisch sind; beide sind freie amöboide, indifferente Mesenchymzellen, obwohl diese Zellen, je nach den äußeren Bedingungen, in denen sie sich befinden, sehr verschieden aussehen können.

Wie die Lymphozyten in den Gefäßen der Area vasculosa Erythroblasten und Megakaryozyten erzeugen, so geschieht dies auch an vielen Stellen im Mesenchym. Im Mesenchym kann aber die differenzierende Entwicklung der Wanderzellen oder der Lymphozyten noch weitergehen – ein Teil von ihnen verwandelt sich hier in granulierte Myelozyten und Leukozyten. Meistens entstehen dabei sofort polymorphkernige, kleine, abortive Leukozyten, die im Gewebe einzeln zer­streut liegen und bald degenerieren oder gefressen werden.

Was die Identität der mesenchymatischen Wanderzellen mit den intravaskulären Lymphozyten der Area vasculosa noch weiter beweist, ist die Tatsache, dass das Endothel gewisser Gefäße, vor allem der Aorta, in gewissen Stadien und an bestimmten Stellen intensiv wuchert, wobei große Zellhaufen entstehen, die in das Lumen hineinragen, vom Blut weggespült werden und sich als echte Lympho­zyten dem zirkulierenden Blute beimischen. Sie können hier von den aus der Area vasculosa stammenden Lymphozyten gar nicht unterschieden werden.

Hier möchte ich gleich auch eine kurze Bemerkung über das zirkulierende Blut machen. Trotz der hergebrachten Meinung ist es Tatsache, dass weiße Blutkörperchen, und zwar große Lymphozyten, schon von den allerfrühesten Ent­wicklungsstadien an im Blute existieren, und zwar in bedeutender Menge. Die meisten Lymphozyten werden natürlich als Erzeuger der Erythroblasten im blut­bildenden Gefäßnetz der Aren vasculosa zurückgehalten, Aber ein Teil geht doch immer in die Zirkulation über.

Das zweite Blutbildungsorgan des Säugetierembryos ist die Leber. Zwischen den Leberzellen, extravaskulär, werden hier bekanntlich Erythrozyten, Megakaryozyten und Granulozyten gebildet. Es fragt sich nun, wo ist der Ausgangspunkt dieser Hämatopoese zu suchen? Wenn man passende Stadien untersucht, findet man, dass zuerst zwischen den Leberzellen und dem Gefäßendothel Wanderzellen auftreten, die ganz so aussehen, wie die Wanderzellen im übrigen Körpermesenchym; zum Teil sind sie lymphozytenähnlich, zum Teil kleinkernig und blass. Wenn wir noch weiter zurückgehen und die Stadien untersuchen, wo die Leber­zellenstränge in das Mesenchym des Septum transversum einwuchern, so gewinnen wir die Überzeugung, dass sich die Wanderzellen aus diesem Mesenchym ableiten lassen. Die Mesenchymzellen gelangen als solche, oder schon als Wanderzellen, zwischen die Leberzellen und die Endothelwände der ebenfalls wuchernden Gefäße. Hier bleiben sie zunächst eine kurze Zeit unverändert. Bald entfalten sie aber eine erstaunliche Entwicklungsfähigkeit. Die Wanderzellen verwandeln sich zunächst zum größten Teil in wuchernde große Lymphozyten, die große Mengen von Erythroblasten und Erythrozyten produzieren. Ein kleinerer Teil verwandelt sich in Granulozyten und Megakaryozyten. Also sehen wir auch in der Leber dieselbe indifferente wandernde Mesenchymzelle, den Lymphozyt, zum Ausgangs­punkt der Hämatopoese werden. Sie findet zwischen den Leberzellen sehr günstige Existenzbedingungen, wuchert und erzeugt die verschiedensten Blutelemente.

Das dritte endgültige Blutbildungsorgan, welches die Leber ablöst, ist das Knochenmark. Auch seine Entstehung habe ich von Anfang an verfolgt. Auch hier sehen wir nun wieder, dass sich in dem jungen, indifferenten Mesenchym, welches in den Knorpel eindringt und ihn resorbiert, ein Teil der fixen Zellen in WanderzelIen verwandelt, die auch zuerst äußerst polymorph aussehen. Auch hier erlangen sie zuletzt fast alle das Aussehen von typischen Lymphozyten, und diese werden wieder zum Ausgangspunkte der Blutbildung, die eigentlich ebenso verläuft wie in der Leber und ebenso wie dort extravaskulär geschieht, zum Unterschied von der Leber aber für das ganze Leben bleibt. Die Lymphozyten erzeugen auch hier durch differenzierende Wucherung Erythroblasten, Megakaryozyten und Granulozyten der verschiedenen 3 Arten. Ein Teil von ihnen aber produziert auch ihresgleichen, d.h. typische ungranulierte Lymphozyten, d.h. funktioniert nicht nur myeloblastisch, sondern gleichzeitig auch lymphoblastisch.

Bis jetzt haben wir eigentlich bei der Blutbildung nur die Elemente des sog. myeloiden Gewebes entstehen sehen – Erythrozyten, Megakaryozyten und Granulozyten. Man könnte nun sagen, und Schridde sagt es auch tatsächlich, dass die Zellen, die ich bisher Lymphozyten nannte, gar keine solchen sind, sondern Myeloblasten. Die von mir beobachteten Elemente entsprechen zwar histologisch vollkommen den Lymphozyten, aber man könnte einwenden, dass nur die­jenigen Zellen als Lymphozyten oder Lymphoblasten zu bezeichnen wären, aus denen nachgewiesenermaßen typische kleine Lymphozyten entstehen. Solche Zellen, also die echten Lymphoblasten, sollen aber nach Schridde erst viel später auf­treten und auch ganz anders aussehen.

Schon von den frühesten Stadien an können nun allerdings einzelne Exem­plare der beschriebenen Wanderzellen typischen kleinen Lymphozyten mehr oder weniger ähnlich sein, aber es ist wahr, dass die letzteren in großen Mengen im Organismus erst relativ spät entstehen. Im Knochenmark sehen wir schon ziemlich häufig, und je später je zahlreicher, viele von den Nachkommen der wuchernden Großlymphozyten das entsprechende Aussehen annehmen. In besonders großen Mengen erscheinen aber die kleinen Lymphozyten in der Thymus. Auch über dieses Organ muss ich hier folglich einiges sagen. Die Kenntnis der Thymushistogenese ist sehr wichtig für die einheitliche Auffassung der Bedeutung der Lymphozyten im Organismus.

Zuerst ist die Thymus rein epithelial. Daun erscheinen in ihrer Umgebung, schon sehr früh, im Mesenchym zahlreiche Wanderzellen von verschle­iern Aussehen, ebenso wie an den anderen Körperstellen; zum Teil sind es wieder große Lymphozyten, zum Teil blasse kleinkernige Wanderzellen. Alle diese amöboiden Zellen wandern nun in die epitheliale Anlage ein und verwandeln sich hier in kürzester Zeit sämtlich in typische große Lymphozyten. Also eigent­lich zuerst dasselbe, wie in der Leber; die ersten Lymphozyten der Thymus sind zweifellos morphologisch die selben Zellen, wie die ersten Granulozyten bildenden Lymphozyten in der Leber. Nur sind die Existenzbedingungen für diese Zellen hier augenscheinlich ganz andere wie dort, denn die Lymphozyten in der Thymus erzeugen, obwohl sie äußerst stark wuchern, niemals Erythroblasten und nur sehr spärliche Granulozyten, sondern immer nur ihresgleichen. Sie infiltrieren bald das ganze Organ; mit der Wucherung werden sie immer kleiner und kleiner, und schließlich bekommt man unzählige Mengen typischer kleiner Lymphozyten, die ins Blut ausgeschwemmt werden.

Was die Lymphknoten anbetrifft, so sieht man bei ihrer ersten Ent­stehung wieder die Verwandlung kleiner, dichtgedrängter, indifferenter Mesenchymzellen in kleine amöboide Wanderzellen. Auch hier tritt wieder von Anfang an die starke Polymorphie dieser Wanderzellen hervor; es können sofort einzelne große Lymphozyten entstehen, meistens bekommt man aber zuerst ganz kleine, obzwar hellkernige, protoplasmaarme amöboide Elemente. Sie wuchern, verwandeln sich dabei zum Teil in typische dunkelkernige kleine Lymphozyten und gelangen in die Lymphspalten. Andererseits sieht man sie sich aber gelegentlich auch in große, sogar riesige Lymphozyten verwandeln, die dann weiter, ebenso wie in der Thymus, wieder kleine Lymphozyten liefern können. Es muss also mit Bestimmt­heit hervorgehoben werden, dass zur Erzeugung typischer kleiner Lymphozyten beim Embryo große Lymphozyten gar nicht unbedingt notwendig sind.

__________

Die Untersuchung der fötalen Blutbildung lehrt uns also, dass man Myelo-blasten und Lymphoblasten nicht unterscheiden kann. Es existiert eine einzige Zellart, eine ubiquitäre, indifferente, polymorphe, wandernde Mesenchymzelle, die je nach den verschiedenen Bedingungen, in denen sie sich befindet, verschieden aussieht uud verschienene Differenzierungsprodukte liefern kann. Auch rein histologisch sind beim Embryo Lympho­blasten und Myeloblasten nicht zu trennen.

__________

Bei Betrachtung der Blutbildung im erwachsenen Organismus von dem uns jetzt interessierenden Standpunkt wären vor allem 2 Fragen zu lösen, die sich auf die ungranulierten Zellen beziehen.

Die erste betrifft die Wechselbeziehungen der großen und kleinen Lymphozyten. Diese beiden Begriffe sind geschaffen worden auf Grund von Untersuchungen die am erwachsenen Organismus ausgeführt wurden. Die geläufige Vor­stellung ist nun die, dass die kleinen Lymphozyten durch Wucherung aus den großen in den Keimzentren entstehen, selbst aber nicht weiter vermehrungsfähig sind und sich namentlich nicht wieder in große Lymphozyten zurückverwandeln können.

Nun glaube ich mich auf Grund meiner Untersuchungen auf einen anderen Standpunkt stellen zu müssen. Die kleinen Lymphozyten entstehen im erwachse­nen Organismus in der Tat meistens durch Wucherung größerer Zellen. Un­mittelbar nach ihrer Entstehung sind sie während einer Zeit lang in der Tat der Wucherung nicht fällig, Wahrscheinlich hängt dieser Zustand von der besonderen, durch die intensive vorherige Wucherung herbeigeführten Kernplasmarelation ab. Dass diese reifen kleinen Lymphozyten aber weiter entwicklungsfähig sind, das halte ich für absolut sicher. Sie gelangen ins Blut und zirkulieren und wenn sie passenden Bedingungen begegnen, dann können sie wieder als vollwertige indifferente Mesenchymzellen zum Ausgangspunkt verschiedenartiger Entwicklungs­prozesse werden; sie können sieh sogar sicherlich wieder durch Hypertrophie in teilungsfähige Großlymphozyten verwandeln. Der Sinn der merkwürdigen Er­scheinung, dass im erwachsenen Organismus die Lymphozyten zum größten Teil das Stadium der kleinen, während einer gewissen Periode der Wucherung un­fähigen Zelle passieren müssen, liegt, wie ich glaube, in dem Umstand, dass die Zellen in diesem Zustand der kleinen Lymphozyten besonders leicht in dem Blut- und Lymphstrom transportiert werden und überall, in alle Organe und Ge­webe gelangen können. Dieser Gedanke ist neulich auch von Weidenreich ausgesprochen worden.

Die kleinen und die großen Lymphozyten sind also bloß vorübergehende Zustände im Leben ein und derselben Zellart, des Lymphozyten im weitesten Sinne des Wortes.

Die zweite Frage betrifft die Unterscheidung von besonderen Lymphoblasten und Myeloblasten im erwachsenen Organismus. Wenn diese Unterscheidung beim Embryo, wie wir gesehen haben, keine Berechtigung hat, so braucht man daraus noch nicht a priori auch auf ihre Unmöglichkeit beim erwachsenen Orga­nismus zu schließen. Eine ganze Reihe von Autoren, mit Schridde an der Spitze, behauptet auch, dass die ungranulierten Zellen im lymphoiden Gewebe einer-, im myeloiden andererseits nicht dieselben Großlymphozyten, sondern zwei verschiedene Zellarten, Lymphoblasten und Myeloblasten, sind.

Über die artliche Identität zweier Zellarten müssen natürlich erstens die histologischen Merkmale und zweitens die physiologischen Eigenschaften, speziell die prospektiven Entwicklungspotenzen entscheiden.

Was nun die histologischen Charaktere der beiden Zellarten betrifft, so ließ ich in meinem Laboratorium den Herrn Dr. S. Tschaschin die von Schridde angegebenen Unterschiede genau prüfen.

Soviel sich nach den bisher erlangten Resultaten urteilen lässt, gelingt es allerdings schon bei neugeborenen Tieren in den meisten Fällen gewisse Unter­schiede zu bemerken, die jedoch von sehr geringfügiger Natur sind. Die Lymphoblasten besitzen einen im allgemeinen schmaleren, homogeneren Protoplasmasaum, während im Kern die Nukleolen größer und in der Regel sehr tief gefärbt er­scheinen. Die sogenannten Myeloblasten besitzen meistens, obwohl nicht immer, einen breiteren Protoplasmasaum von mehr lockerem, retikulärem Gefüge; seine Basophilie schwankt in den weitesten Grenzen. Der Kern enthält stets Nukleolen, sie sind aber kleiner und färben sich nicht so distinkt. Überhaupt er­scheinen die Myeloblasten viel polymorpher, als die Lymphoblasten, und die unter den Myeloblasten selbst bestehenden Unterschiede sind oft größer, als die Unterschiede zwischen den Myeloblasten und Lym­phoblasten.

Speziell wurde auch die Altmann-Schriddesche Färbung angewandt, die von Schridde als das wichtigste Mittel zur Unterscheidung bezeichnet wird, und es hat sieh ergeben, dass die großen, bei den Eosin-Azur-Färbungen granulalosen Zellen im adenoiden Gewebe und im Knochenmark, also die Schriddeschen Lymphoblasten und Myeloblasten in beiden Fällen sowohl granulahaltig, als auch granulaarm oder granulalos sein können; meistens enthalten sie Hur wenige Granula. Also im Gegensatz zu Schridde, nach welchem die Lymphoblasten immer, die Myeloblasten niemals Granula enthalten sollen. Die kleinen und mittleren Lymphozyten enthalten hingegen immer sehr deutliche zahlreiche Körner. Ebenso färben sieh die Spezialkörnchen und die eosinophilen Körner mit. Die Methode gibt überhaupt ganz dieselben Bilder, wie die altbekannte ursprüngliche von AItmann, und zu Untersuchungen über Blutzellen erscheint sie mir gerade besonders wenig geeignet. Die verschiedenen Färbungsnüancen, auf die sich Schridde be­ruft, können natürlich nicht ernsthaft für die Unterscheidung bestimmter Zellarten in Anspruch genommen werden. Es versteht sich von selbst, dass alle diese Granulabilder überhaupt keine besondere Bedeutung haben können; denn dass in ein und derselben Zelle je nach ihrem Funktionszustand Granula, selbst wenn sie intravital existieren sollten, neu auftreten und wieder vergehen können, ist wohl über alle Zweifel erhaben.

Wenn also gewisse, wenig konstante und schwer zu definierende histologische Unterschiede auch vorhanden sind, so muss man andererseits bedenken, dass die Zellen in den Lymphknoten und im Mark sich ja sicherlich in ganz verschiedenen Medien befinden; die histologischen Unterschiede könnten schon dadurch allein ge­nügend erklärt werden. Außerdem sehen wir ja, dass sich die Lymphozyten schon von den ersten embryonalen Stadien an durch äußerste Polymorphie aus­zeichnen, obwohl sie trotzdem alle vollkommen gleichwertig sind. Die histo­logischen Unterschiede allein berechtigen uns also nicht zur scharfen Trennung der Lymphoblasten und Myeloblasten. Diese Trennung wäre erst möglich, wenn es gelingen würde, zu beweisen, dass die einen Zellen in die anderen niemals übergehen können und dass die Differenzierungsprodukte der beiden unter allen möglichen Bedingungen ganz verschiedene sind.

Diese physiologischen oder vielmehr die produktiven zytogenetischen Eigenschaften unserer Zellen wollen wir jetzt näher betrachten. Wenn die Lymphozyten des adenoiden Gewebes und die Lymphozyten des Markes gleichwertige Zellen sind und normal verschiedene Differenzierungsprodukte nur aus dem Grunde geben, weil sie sich in verschiedenen Existenzbedingungen befinden, so müsste man versuchen, für die Lymphozyten des adenoiden Gewebes, also für die ver­meintlichen Lymphoblasten, solche Bedingungen künstlich zu schaffen, dass sie sich zu Granulozyten und Erythroblasten differenzieren könnten. Es ist ja be­kannt, dass bei verschiedenen Gelegenheiten im adenoiden Gewebe myeloide Trans­formation eintreten kann. Es kann jetzt auch als allgemein bewiesen gelten, dass die letztere dabei von autochthonen Elementen ausgeht. Es fragt sich nur, welche Zellen kommen dabei in Betracht? Es sind bekanntlich nicht die Keimzentrumszellen, die sich in Myelozyten und Erythroblasten verwandeln – sondern dies geschieht mit Zellen, die in den Marksträngen der Lymphknoten und in der roten Milzpulpa liegen. Die Dualisten erblicken nun gerade darin einen Beweis für die Richtigkeit ihrer Anschauungen; nach ihnen sollen es besondere, von den Lymphoblasten ganz verschiedene, latent schon früher dagewesene Myeloblasten sein, die sich dabei in myeloide Elemente verwandeln, oder direkt die Gefäßwandzellen. Andere nehmen wieder an, dass dabei besondere adventitielle indiffe­rente Mesenchymzellen zum Ausgangspunkt der Transformation werden.

In meinem Laboratorium ließ ich durch Frau Dr. H. Babkin an Tieren besondere Experimente machen, um der Lösung dieser Frage etwas näher zu treten. In der Milz gelang es sehr leicht, einen Teil der myeloiden Umwandlung, nämlich die Bildung von Myelozyten und Megakaryozyten hervorzurufen – es genügt dazu, einen aseptischen Fremdkörper in das Milzgewebe einzuführen – in seiner Umgebung bekommt man sehr bald zahlreiche Myelozyten und Megakaryozyten. In den Lymphknoten gelang es hingegen vorläufig nicht, mit dieser und ähnlichen Methoden myeloide Verwandlung auszulösen. Auch in der Milz blieben die Malpighischen Körperchen unverändert – die Myelozyten entstanden immer nur in der roten Pulpa und in den Venensinus.

Diese Experimente scheinen ebenfalls auf den ersten Bück für die Verschiedenheit der Lymphoblasten und Myeloblasten zu sprechen. Indessen glaube ich doch nicht, dass ihre vorläufigen Resultate so zu deuten wären. Wir müssen bedenken, dass im adenoiden Gewebe ganz besondere Bedingungen herrschen müssen, die diese Bezirke vor allen anderen Körperteilen gerade für die homo­plastische Vermehrung der indifferenten Mesenchymzellen, der Lymphozyten, ge­eignet erscheinen lassen. In diesen Brutstätten fehlen normal vollständig die Vorbedingungen für die myeloide Verwandlung der Lymphozyten. Diese beiden Arten von Bedingungen, die für die homoplastische Wucherung in unverändert indifferentem Zustande einerseits und die für die heteroplastische, differenzierende myeloiden Elementen andererseits nötigen, sind augenscheinlich im erwachsenen Organismus miteinander nicht zu vereinigen, und deswegen gelingt es auch nicht auf künstlichem Wege, die Keimzentrumszellen und die jungen kleinen Lymphozyten an Ort und Stelle ihrer Entstehung zu veranlassen, direkt in Granulozyten und Erythroblasten überzugehen. Wo die myeloide Verwandlung beginnt, hört andererseits bekanntlich die homoplastische Wucherung auf und verschwinden die Keimzentren. 

Wahrscheinlich ist auch die Jugendlichkeit der weitaus größten Mehrzahl der Lymphozyten im adenoiden Gewebe an und für sich schon selbst ein Hinder­nis für ihre myeloide Verwandlung; für diese Zellen muss vielleicht eine gewisse Zeit verstreichen, ehe sie der myeloiden Differenzierung fähig werden, und außerdem müssen sie dazu in besondere, entsprechende Existenzbedingungen geraten; es kann vermutet werden, dass z. B. die Zirkulation im Blutstrom die ans dem adenoiden Gewebe stammenden Lymphozyten zur myeloiden Verwandlung besonders geeignet macht.

Wenn das alles indirekte, vielleicht zweifelhafte Beweise für die Gleich­wertigkeit der Lymphozyten des lymphoiden und myeloiden Gewebes in Bezug auf ihre prospektive Entwicklungspotenz im erwachsenen Organismus sind, so exi­stiert, wie ich glaube, noch ein anderer direkter Beweis, der indessen vorläufig, meiner Meinung nach, von den verschiedenen Autoren, die über heterotrope Bildung myeloiden Gewebes geschrieben haben, zu wenig beachtet wurde.

Ich habe nämlich seinerzeit die Histogenese des myeloiden Gewebes studiert, welches sich in der Kaninchenniere nach Unterbindung ihrer Hauptgefäße ent­wickelt. Dies Objekt ist besonders in der Beziehung günstig, dass ja in dem spärlichen Stroma der Niere in der Norm schon sicherlich keinerlei lymphoide Elemente existieren. Es hat sich herausgestellt, dass dabei alle Knochenmark­elemente, Granulozyten, Megakaryozyten und Erythroblasten aus den Lymphozyten des zirkulierenden Blutes entstehen, also aus Zellen, die ja nachgewiesenermaßen aus dem adenoiden Gewebe mit seinen Keimzentren stammen. Die kleinen Lymphozyten des Blutes verwandeln sich dabei wieder in große Lymphozyten und wandern in das Gewebe als kleine oder schon als große Zellen aus. Noch innerhalb der Gefäße oder erst nach der Auswanderung bilden sie dann durch Granulaanhäufung im Plasma Myelozyten, durch Hämoglobinausarbeitung Erythro­blasten. Eigentliche Myeloblasten pflegen im normalen Blut doch wohl nicht vor­banden zu sein, obwohl K. Ziegler die großen mononukleären Leukozyten für solche dauernd indifferente und entwicklungsfähige Zellen erklärt. Aber auch diese entstehen nach neueren Untersuchungen aus den banalen kleinen Lymphozyten.

Ich glaube annehmen zu können, dass, wenn beim Menschen myeloides Ge­webe heterotrop entsteht, dies vielleicht auch auf Kosten der ja überall vorhandenen Lymphozyten des zirkulierenden Blutes oder der ihnen vollständig gleichwertigen Lymphozyten des Bindegewebes und des adenoiden Gewebes geschehen könnte, nicht auf Kosten latenter Myeloblasten, oder problematischer wuchernder Adventitiazellen oder Gefäßwandzellen.

Alles in allem komme ich folglich zum Schluss, dass auch für den er­wachsenen Organismus kein Grund vorliegt, die Existenz von zwei scharf getrennten Zellarten, der Myeloblasten und Lymphoblasten, anzuerkennen. Im Säuge­tierorganismus existiert eine Zellart, der Lymphozyt im weitesten Sinne des Wortes, die je nach dem Ort ihres Aufenthaltes, je nach den Existenzbedingungen, verschieden aussehen und verschiedene Differenzierungsprodukte liefern kann. Die Lymphozyten sind ubiquitär, überall gleichwertig, histogene und hämatogene können nicht unterschieden werden. Im adenoiden Gewebe erzeugen sie durch homoplastische Wucherung nur immer wieder Lymphozyten. Die dabei entstehende leicht transportable Form, der kleine Lymphozyt, zirkuliert mit dem Blut- und Lymphstrom überall im Organismus und erlangt nach einer gewissen Periode der Inaktivität bald wieder die volle Entwicklungsfähigkeit.

Originally published in: Folia Haematologica 8.1909, 125-134.

" ["DETAIL_TEXT_TYPE"]=> string(4) "html" ["~DETAIL_TEXT_TYPE"]=> string(4) "html" ["PREVIEW_TEXT"]=> string(0) "" ["~PREVIEW_TEXT"]=> string(0) "" ["PREVIEW_TEXT_TYPE"]=> string(4) "text" ["~PREVIEW_TEXT_TYPE"]=> string(4) "text" ["PREVIEW_PICTURE"]=> NULL ["~PREVIEW_PICTURE"]=> NULL ["LANG_DIR"]=> string(4) "/ru/" ["~LANG_DIR"]=> string(4) "/ru/" ["SORT"]=> string(3) "500" ["~SORT"]=> string(3) "500" ["CODE"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" ["~CODE"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" ["EXTERNAL_ID"]=> string(3) "902" ["~EXTERNAL_ID"]=> string(3) "902" ["IBLOCK_TYPE_ID"]=> string(7) "journal" ["~IBLOCK_TYPE_ID"]=> string(7) "journal" ["IBLOCK_CODE"]=> string(7) "volumes" ["~IBLOCK_CODE"]=> string(7) "volumes" ["IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["~IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["LID"]=> string(2) "s2" ["~LID"]=> string(2) "s2" ["EDIT_LINK"]=> NULL ["DELETE_LINK"]=> NULL ["DISPLAY_ACTIVE_FROM"]=> string(0) "" ["IPROPERTY_VALUES"]=> array(18) { ["ELEMENT_META_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_META_KEYWORDS"]=> string(0) "" ["ELEMENT_META_DESCRIPTION"]=> string(456) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающихThe original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" ["ELEMENT_PREVIEW_PICTURE_FILE_ALT"]=> string(530) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <h3><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Оригинальная версия статьи</a> <p> </p> </h3>" ["ELEMENT_PREVIEW_PICTURE_FILE_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_DETAIL_PICTURE_FILE_ALT"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["ELEMENT_DETAIL_PICTURE_FILE_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_KEYWORDS"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_META_DESCRIPTION"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_ALT"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_PICTURE_FILE_NAME"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" ["SECTION_DETAIL_PICTURE_FILE_ALT"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_DETAIL_PICTURE_FILE_TITLE"]=> string(282) "Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих" ["SECTION_DETAIL_PICTURE_FILE_NAME"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" ["ELEMENT_PREVIEW_PICTURE_FILE_NAME"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" ["ELEMENT_DETAIL_PICTURE_FILE_NAME"]=> string(100) "originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e" } ["FIELDS"]=> array(1) { ["IBLOCK_SECTION_ID"]=> string(2) "37" } ["PROPERTIES"]=> array(18) { ["KEYWORDS"]=> array(36) { ["ID"]=> string(2) "19" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:46:01" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(27) "Ключевые слова" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "KEYWORDS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "19" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "4" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "Y" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "Y" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> bool(false) ["VALUE"]=> bool(false) ["DESCRIPTION"]=> bool(false) ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> bool(false) ["~DESCRIPTION"]=> bool(false) ["~NAME"]=> string(27) "Ключевые слова" ["~DEFAULT_VALUE"]=> string(0) "" } ["SUBMITTED"]=> array(36) { ["ID"]=> string(2) "20" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Дата подачи" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "SUBMITTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "20" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Дата подачи" ["~DEFAULT_VALUE"]=> NULL } ["ACCEPTED"]=> array(36) { ["ID"]=> string(2) "21" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(25) "Дата принятия" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "ACCEPTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "21" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(25) "Дата принятия" ["~DEFAULT_VALUE"]=> NULL } ["PUBLISHED"]=> array(36) { ["ID"]=> string(2) "22" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Дата публикации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "PUBLISHED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "22" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Дата публикации" ["~DEFAULT_VALUE"]=> NULL } ["CONTACT"]=> array(36) { ["ID"]=> string(2) "23" ["TIMESTAMP_X"]=> string(19) "2015-09-03 14:43:05" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(14) "Контакт" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "CONTACT" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "23" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(14) "Контакт" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHORS"]=> array(36) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12482" } ["VALUE"]=> array(1) { [0]=> string(3) "900" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "900" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_RU"]=> array(36) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_RU"]=> array(36) { ["ID"]=> string(2) "26" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(22) "Организации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "26" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(22) "Организации" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_RU"]=> array(36) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12477" ["VALUE"]=> array(2) { ["TEXT"]=> string(530) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <h3><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Оригинальная версия статьи</a> <p> </p> </h3>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(472) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Оригинальная версия статьи

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["DOI"]=> array(36) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12471" ["VALUE"]=> string(29) "10.3205/ctt-2008-en-000040.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2008-en-000040.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_EN"]=> array(36) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12472" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor"> Von Prof. Dr. A. Maximow </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

Von Prof. Dr. A. Maximow

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_EN"]=> array(36) { ["ID"]=> string(2) "38" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Organization" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "38" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Organization" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_EN"]=> array(36) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12473" ["VALUE"]=> array(2) { ["TEXT"]=> string(868) "<p> The original article in German. </p> <p> Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909) </p> <p class="bodytext"> <em>(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact <a href="javascript:linkTo_UnCryptMailto('qempxs.mrjsDgxx1nsyvrep2gsq');">info@<span style="display:none;">spam is bad</span>ctt-journal.com</a>, thank you.)</em> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(766) "

The original article in German.

Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909)

(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact info@spam is badctt-journal.com, thank you.)

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["NAME_EN"]=> array(36) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12474" ["VALUE"]=> string(174) "The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(174) "The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" } ["FULL_TEXT_RU"]=> array(36) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["PDF_RU"]=> array(36) { ["ID"]=> string(2) "43" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF RUS" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_RU" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "43" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(7) "PDF RUS" ["~DEFAULT_VALUE"]=> string(0) "" } ["PDF_EN"]=> array(36) { ["ID"]=> string(2) "44" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF ENG" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "44" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12478" ["VALUE"]=> string(3) "590" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "590" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF ENG" ["~DEFAULT_VALUE"]=> string(0) "" } ["NAME_LONG"]=> array(36) { ["ID"]=> string(2) "45" ["TIMESTAMP_X"]=> string(19) "2023-04-13 00:55:00" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(72) "Название (для очень длинных заголовков)" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "NAME_LONG" ["DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "45" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(80) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(72) "Название (для очень длинных заголовков)" ["~DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } } } ["DISPLAY_PROPERTIES"]=> array(6) { ["AUTHOR_EN"]=> array(37) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12472" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor"> Von Prof. Dr. A. Maximow </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

Von Prof. Dr. A. Maximow

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(51) "

Von Prof. Dr. A. Maximow

" } ["SUMMARY_EN"]=> array(37) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12473" ["VALUE"]=> array(2) { ["TEXT"]=> string(868) "<p> The original article in German. </p> <p> Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909) </p> <p class="bodytext"> <em>(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact <a href="javascript:linkTo_UnCryptMailto('qempxs.mrjsDgxx1nsyvrep2gsq');">info@<span style="display:none;">spam is bad</span>ctt-journal.com</a>, thank you.)</em> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(766) "

The original article in German.

Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909)

(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact info@spam is badctt-journal.com, thank you.)

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(766) "

The original article in German.

Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909)

(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact info@spam is badctt-journal.com, thank you.)

" } ["DOI"]=> array(37) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12471" ["VALUE"]=> string(29) "10.3205/ctt-2008-en-000040.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2008-en-000040.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(29) "10.3205/ctt-2008-en-000040.01" } ["NAME_EN"]=> array(37) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12474" ["VALUE"]=> string(174) "The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(174) "The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(174) "The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere" } ["AUTHORS"]=> array(38) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12482" } ["VALUE"]=> array(1) { [0]=> string(3) "900" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "900" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(63) "Alexander A. Maximow" ["LINK_ELEMENT_VALUE"]=> bool(false) } ["SUMMARY_RU"]=> array(37) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12477" ["VALUE"]=> array(2) { ["TEXT"]=> string(530) "<p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <h3><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Оригинальная версия статьи</a> <p> </p> </h3>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(472) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Оригинальная версия статьи

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(472) "

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Оригинальная версия статьи

" } } } [2]=> array(49) { ["IBLOCK_SECTION_ID"]=> string(2) "37" ["~IBLOCK_SECTION_ID"]=> string(2) "37" ["ID"]=> string(3) "904" ["~ID"]=> string(3) "904" ["IBLOCK_ID"]=> string(1) "2" ["~IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["~NAME"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["ACTIVE_FROM"]=> NULL ["~ACTIVE_FROM"]=> NULL ["TIMESTAMP_X"]=> string(19) "19.06.2017 15:36:52" ["~TIMESTAMP_X"]=> string(19) "19.06.2017 15:36:52" ["DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so/" ["~DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so/" ["LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["~LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["DETAIL_TEXT"]=> string(26087) "

The idea of stromal-hematopoietic cell interactions was the essential part of Alexander Maximov's theory of hematopoiesis, which he proposed more than 60 years ago. According to Maximov (see Figs. 1-4), committed hematopoietic precursors descend from the hematopoietic stem cells due to local impacts generated by marrow stroma; this creates the conditions for hematopoietic cell differentiation [1]. Maximov's theory was far ahead of his time, and, though Maximov was highly respected in the scientific community, his concept of local "differentiation conditions" operative in hematopoiesis was met with particular skepticism. Today, Maximov's idea raises no doubt; in fact, it constitutes the essence of the problem of hematopoietic microenvironment (HME). What provokes discussions in modern hematology is the exact types of stromal cells responsible for HME and the mechanisms of stromal-hematopoietic cell interactions. Maximov assumed that the stromal cells in question were stromal fibroblasts (reticular cells), but for a long time many experimental hematologists denied this. Only recently has it been possible to apply two experimental models for checking the microenvironmental functions of marrow fibroblasts. The first model is the transfer of HME by heterotopic transplantation of marrow cells; the sccond is the establishment of HME in vitro by stromal cell underlayers in Dexter cultures. 

Heterotopic transplantation of marrow cells results in the formation of marrow organs covered by a bone capsule [2-5]. Their hematopoietic cells are of the recipient origin [6], indicating that engraftment of some category of marrow cells results in the formation of bone and an HME suitable for population by hematopoietic cells and for their proliferation and differentiation. Heterotopic marrow can be retransplanted repeatedly with similar results, provided the recipients are compatible with H-2 antigens of the initial donor, not of the intermediate recipients [7, 8]. This means that HME is transferred by engraftment of the marrow cells which remain unreplaced by the recipient cells. Chromosome typing of clonogenic stromal fibroblasts (CFUf) of the heterotopic marrow confirmed their donor origin [9, 10], and the problem was to check whether stromal fibroblasts were able to transfer HME when grafted heterotopically.

The in vitro descendents of CFUf after several passages compose diploid fibroblast culturcs [11-13]. Tested by heterotopic transplantation, they were found to form bone marrow organs, while engraftment of cultured spleen fibroblasts (the descendents of spleen CFUf) produced lymphoid organs [14, 15]. Thus, cultured marrow fibroblasts appear to be able to transfer bone marrow HME. Depending on the origin of marrow fibroblast cultures (the source CFUf being from red or yellow marrow), their engraftment transferred not only the general pattern of HME, but also such details as the density of hematopoietic cells in a would-be marrow [16].

Cultured marrow fibroblasts produce hematopoietic growth factor (M-CSF, G CFS, GM-CFS, BFUf- and mixed-colony-CSF) which can be detected in the culture medium [17-20]. They regulate proliferation and differentiation of GMCFU: their stimulatory effects were noted when the target marrow contained few spontaneous colonies, the inhibitory effects when large numbers of spontaneous GM-CFU were present [21]. Hematopoietic growth factors are also produced by cloned lines of marrow fibroblasts [22]. However, the direct proof of in vitro microenvironmental competence of marrow fibroblasts was their ability to establish HME in Dexter-type cultures. It has been shown [23] that when used as underlayers, the passaged murine marrow fibroblasts, free from macro phages and endothelial cells, supported hematopoiesis if seeded with stromal cell-depleted marrow suspensions.

Thus, cultured marrow fibroblasts transfer HME, release hematopoietic growth factors in vitro, and are capable of presenting them in a proper way to support hematopoiesis in cultures. This confirms Maximov's hypothesis of the role of marrow fibroblasts in hematopoiesis.

The population of marrow fibroblasts is probably a heterogeneous one, and there is no evidence that marrow fibroblasts which produce or present hematopoietic growth factors are the same cells which transfer HME, and vice versa. It may well be that there are several subpopulations of marrow fibroblasts with different microenvironmental functions. At present, fibroblasts including those from nonhematopoietic and hematopoietic organs look much alike, reminiscent of the situation with lymphocytes in Maximov's time. The main and most conclusive sine of fibroblasts (mechanocytes) is interstitial collagen types I and III synthesis, and few markers of their phenotype and genetic diversity have been so far ascertained. The diversity does exist, for instance, between marrow as compared with spleen fibroblasts, which is proved by the results of their heterotopic transplantation. The next question regarding HME seems to be the diversity of marrow fibroblasts including their clonogenic precursor cells.

In primary cultures of marrow cell suspensions the CFUf (CFCf) form adherent-cell colonies which are cell clones [24, 25]. The colonies are composed of fibroblasts which synthesize type-I and -III collagen and fibronectin and lack macrophage markers and VIII-factor-associated antigen [26-30]. Morphologically, the colonies are distinctly heterogeneous within each culture. Some are composed of elongated or blanket-like fibroblasts or of a mixture of both; the colonies may include fat cells or have a mineralized intercellular matrix [39]. These differences can hardly be regarded as markers of CFCf, the diversity not beeing stable at passaging and recloning.

In situ CFCf are outside the cycle arrested in G0 [31]. Marrow fibroblasts possess PDGF receptors [32] and in medium with platelet-poor plasma their proliferation and the CFUf colony formation requires PDGF [34]. It is believed that serum growth factors, which include PDGF, are sufficient for recruitment of CFCf into the cycle and that CFUf colony formation in serum-supplemented medium does not require additional growth stimulation. Yet this is probably not the case.

The efficiency of CFUf colony formation (CFEf) drops close to zero in low-density marrow cultures if they are depleted of nonadherent cells: 85% of CFCf do not proliferate at all or pass through one to three cell doublings (Fig. 1). On the other hand, the CFEf increases dramatically when such adherent marrow cell cultures are supplemented with irradiated marrow feeder cells or with platelets. This colony-stimulating activity is not replaced by additional PDGF and is expressed only in the serum-rich medium. Being stimulated by platelets each fibroblast precursor present in marrow cell suspensions turns out to be a clonogenic stromal cell (Fig. 1).

2009_Friedenstein_Fig01.jpg

Figure 1. CFUf colony formation in mice adherent marrow cell cultures.
Cultures were initiated by injecting 5×105 mechanically (white columns) or 5×104 trypzinised (black columns) marrow cells per culture flask (25 cm2). Two hours after explantation the nonadherent cells were decanted from all cultures and further cultivation accomplished in aMEM medium plus 20% embryonal calf serum, part of the cultures (G) being additionally suplemented with 107 irradiated (60 Gy) marrow cells. Abscissa: A - E - fibroblast foci, fibroblast colonies and single fibroblasts in feeder non-supplemented cultures. A - single fibroblasts in one day cultures; B - F - 10 day cultures. B - single fibroblasts, C - two fibroblasts foci, D - three-eight fibroblasts foci, E - nine-forty nine fibroblasts foci, F - fibroblast colonies composed of 50 and more fibroblasts, Σ-sum of B, C, D, E and F per culture. G - fibroblasts colonies in 10 days feeder-supplemented cultures. Ordinate: mean numbers (M ± m) of single fibroblasts, fibroblast foci and fibroblast colonies for 3-5 cultures.

Thus, nonstromal marrow cells which accompany CFCf in marrow cultures (probably megakaryocytes) provide growth-stimulating factors for CFUf colony formation. There are indications that CFCf are sensitive also to other growth-stimulating factors which induce the formation of fibroblast colonies with a different composition of matrix proteins. It has been reported [35] that marrow cells cultured in methylcelluloseclotted plasma with cortisone and PHA-stimulated leukocyte-conditioned medium produced fibroblast colonies with collagen type IV and laminin, in addition to collagen types I and III and fibronectin present in CFUf colonies, in liquid cultures with the serum-supplemented medium. The differences suggest either that there is a diversity of CFCf, which also require different colony-stillulating factors, or that the same CFCf can generate different descendents, depending on the stimulating factors used to induce colony formation.

Marrow CFCf diversity was demonstrated with regard to their proliferative and differentiative potencies. Only a small portion (10%) of single CFUf colonies transferred HME when grafted heterotopically, i. e., formed bone marrow organs [36]. At least 30% of CFCf appeared to be highly proliferative cells which provide single-colony-derived fibroblast cultures with 20-30 population doublings. When tested by transplantation of cells in diffusion chambers, 20% of these cultures formed simultaneously bone, cartilage, and reticular-like tissue, 30% formed only bone, and 27% only reticular-like tissue. The number of osteogenic units in late passages of cultured fibroblasts exeeded by far the total numbers of the initially explanted marrow cells, indicating that osteogenic precursors intensively multiplied within cultures [37]. There are reasons to consider CFCf with osteochondrogenic potencies as being osteogenic stem cells [38, 39]. One can assume that some of them are the progenitors of a marrow stromallineage which includes committed osteogenic precursors, mature bone cells, and microenvironmentally competent fibroblasts (reticular cells).

2009-3-en-Friedenstein-Figure-2-a_01.JPG

Figure 2. Type I collagen in 12 day CFUf colony of guinea pig periferal blood leukocytes.

A. Anticollagen antiserum, immunoperoxidase reaction


2009-3-en-Friedenstein-Figure-2-b_02.JPG

B. Live culture

The assumption is backed up by the obligatory association of HME transfer with bone formation, which applies to heterotopic transplantation of both freshly isolated marrow and single-CFUf-derived fibroblast colonies. In the heterotopic marrow the CFUf are of donor origin [9, 10], and it is reasonable to assume that the same applies to the microenvironmentally competent reticular cells. However, the ability of fibroblasts from single CFUf-colony-derived heterotopic bone marrow organs to support hematopoiesis in vitro, and their donor origin (which would be the proof of the above speculation) was not tested up to now. Anyway, the hierarchy of marrow precursors awaits further studies.

As far as Maximow's contribution to the problems of HME is concerned, it is impossible to omit his last work, entitled "Cultures of blood leukocytes. From lymphocyte and monocyte to connective tissue." [40]. It describes the formation of fibroblasts in plasma-clot cultures of guinea-pig blood cells. Subsequently, his results were put in question on the grounds of two possible objections, namely that the source of fibroblasts might be fragments of vessel walls which contaminate the blood during sampling, and that the cells in question were not fibroblasts (for references, see [41]).

Figure 3 A, B. Fibroblasts and collagen fibrils in 16 day CTUf colonies of rabbit periferal blood leukocytes. E. M.

2009-3-en-Friedenstein-Figure-3-a.JPG

2009-3-en-Friedenstein-Figure-3-b_01.JPG

2009-3-en-Friedenstein-Figure-4.jpg

Figure 4. Professor Alexander Maximov

The first objection proved to be invalid when a CFUf colony assay was carried out with blood cells. It turned out that the incidence of CFUf colonies in guinea-pig and rabbit leukocyte cultures did not change with the number of punctures performed for blood sampling [42]. It has also been shown that fibroblasts in blood-derived CFUf colonies synthesize collagen type I [43] and lack VIII-factor-associated antigen and macrophage determinant MacI [44], which confirms their fibroblast nature (Fig. 2, 3). It remains unknown from where CFUf migrate into blood, where they settle (if they do), and why blood-derived CFUf are not detectable in some mammals, including human beings. The presence of fibroblast precursors in blood discovered by Maximov is related to many unsolved problems of HME, in particular, to the possibility of CFUf repopulation; CFUf circulation in blood does not prove it at all.


The story of the circulating fibroblast precursor cells demonstrates once again that not only Maximov's ideas, but also his experimental results are so topical that Professor Alexander Maximov almost remains a participant of present-day research (Fig. 5).

2009-3-en-Friedenstein-Figure-5-a.jpg

Figure 5. Maximov in his tissue culture laboratory in the Military Medical Academy in Petersburg (1915).

A. Preparation of plasma for plasma-clot cultures


2009-3-en-Friedenstein-Figure-5-b.jpg

B. Placing tissue fragments in culture medium


2009-3-en-Friedenstein-Figure-5-c.jpg

C. Kaissug hangrug-drop cultures in hallow-ground microscope slides


References

1. Maximov AA. Über experimentelle Erzeugung von Knochenmarks-Gewebe. Anat Anz. 1906;28:24-38.

2. Tavassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968;161:54-56.

3. Tavassoli M, Maniatis A, Binder RA, Crosby WH. Studies on marrow histogenesis. Proc Soc exp BioI Med. 1971;138:868-870.

4. Tavassoli M, Friedenstein A. Hemopoietic stromal microenvironment. Am J Hemat. 1983;15:195-203.

5. Friedenstein AJ, Latzinik NV, Grosheva AO, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured marrow cells in porous sponges. Exp Hematol. 1982;10:217-227.

6. Friedenstein AJ, Petrakova KV, Kuralesova AI, Frolova OF. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hemopoietic tissues. Transplantation. 1968;6:230-247.

7. Friedenstein AJ, Kuralesova A. Osteogenic precursors of bone marrow in radiation chimeras. Transplantation. 1971;12:99-108.

8. Friedenstein A, Luria E. Cellular bases of hemopoietic microenvironment. Moscow: Izd-vo "Medicina"; 1980. Russian.

9. Friedenstein A, et al. Origin of bone marrow stromal mechanocytes in radiochimeras and in heterotopic transplants. Exper Hematol. 1978;6:440-444.

10. Friedenstein A. Precursor cells of mechanocytes. Inter Rev Cytol. 1976;47:327-359.

11. Friedenstein A, Chailakhjan RV, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393-403.

12. Miskarova ED, Lalykina KS, Kokorin IN, Friedenstein AJ. Osteogenic potencies of prolonged diploid cultures of myeloid cells. Bull Exp BioI Med. 1970;56:78-81.

13. Friedenstein A. Determined and inducible osteogenic precursor cells. Ciba Found Sympos (new series). 1973;11:170-185.

14. Friedenstein AJ, et al. Stromal cells responsible for transferring the microenvironment of hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331-340.

15. Friedenstein A. Stromal mechanocytes of bone marrow: cloning in vitro and retransplantation in vivo. In: Thierfelder S, Rodt H, Kolb H (eds). Immunology of bone marrow transplantation. Springer-Verlag. 1980;19-29.

16. Patt HM, Maloney MA, Flannery ML. Hemopoietic microenvironment transfer by stromal fibroblasts derived from bone marrow varying in cellularity. Exp Hematol. 1982;10:738-742.

17. Akasaka M, et al. Production of monoclonal antibody to adult bone marrow preadipocite line (H-I/A). Exp Hematol. 1987;15:610-618.

18. Brockbank K, Van Peer CM. Colony-stimulating activity produced by hemopoietic organ fibroblastoid cells in vitro. Acta Hematol. 1983;69:369-476.

19. Zucali J, et al. Interleukin I stimulates fibroblasts to produce granulocyte macrophage colony-stimulating activity and prostoglandin E2. J Clin Invest. 1986;78:1306-1323.

20. Lee M, Segal GM, Bagby GC. Interleukin I induces human bone marrow-derived fibroblasts to produce multilineage hemopoietic growth factors. Exper Hematol. 1987;15:983-988.

21. Brondy V, et al. Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hemopoietic growth factors. Blood. 1986;68:530-537.

22. Greenberger BR, Wilson FD, Woo L. Granulopoetic effects of human bone marrow fibroblastic cells and abnormalities in "granulopoietic microenvironment". Blood. 1981;58:557-563.

23. Brockbank KCM, De Jong JP, Piersma AH, Voerman JSA. Hemopoiesis on purified bone-marrow-derived reticular fibroblasts in vitro. Exper Hematol. 1986;14:386-394.

24. Latzinik N, et al. The content of stromal colony-forming cells (FCFC) in the mousebone marrow and the clonal nature of  FCFC-derived fibroblast colonies. Ontogenesis. 1986;1:27-35.

25. Friedenstein A, et al. On clonality of CFUf-derived marrow stromal colonies (in press). [1989].

26. Latzinik NV, Sidorovich SY, Tarchanova IA. Studies of surface receptors of the stromal mechanocytes of hemopoietic organs. Immunology. 1980;1:26-28.

27. Castro-Malaspina H, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFUf) and their progeny. Blood. 1980;56:286-301.

28. Wilson FD, O'Grady L, Mc Meil GJ, Munn SL. The formation bone marrow-derived fibroblastic plaques in vitro. Exper Hematol. 1974;2:343-349.

29. Friedenstein A, et al. Precursors for fibroblasts in different populations of hemopoietic cells as detected by the in vitro colony assay method. Exper Hematol. 1974;2:83-92.

30. Friedenstein AJ, Gorskaya UF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hemopoietic organs. Exper Hematol. 1976;4:267-274.

31. Keilis-Borok IV, Latzinik NV, Epichina SY, Friedenstein AJ. Dynamics of the formation of fibroblast colonies in monolayer cultures of bone marrow, according to 3H-thymidine incorporation experiments. Cytologia. 1971;13:1402-1409.

32. Bowen-Pope DF, Seifert RA, Ross R. The platelet-derived growth factor receptor. In: Boyton L, Leffert H (eds). Control of animal cell proliferation, Acad Press. 1985;1:281-312.

33. McIntyre AP, Bjornson BH. Human bone marrow stromal cell colonies: response to hydrocortisone and dependence of platelet-derived growth factor. Exper Hematol. 1986;14:833-839.

34. Wang OR, Wolf  NS. The effect of several growth factors on the in vitro growth of bone marrow stromal cells. Exper Hematol. 1987;15:610.

35. Lim B, et al. Characterization of reticulofibroblastoid colonies (CFU-RF) derived from bone marrow and long-term marrow culture monolayers. J Cellul Physiol. 1986;127:45-54.

36. Chailakyan RK, Gerasimov YF, Friedenstein AJ. Content of osteogenic precursor cells in the bone marrow and their proliferation in cultures. Bull Exp Biol Med. 1984;11:605-608.

37. Gerasimov Y, Friedenstein AJ, Chajlakjan RK, Shiskova VV. Differential potentiality of clonal strains of bone marrow fibroblasts. Bull Exp Biol Med. 1986;6:717-719.

38. Friedenstein AJ, Chajlachyan RK, Gerasimov YF. Bone marrow osteogenic stem cells in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263-272.

39. Owen ME, Friedenstein AJ. Stromal stem cells: marrow derived osteogenic precursors. In: Evered D, Harnett S. (eds). Cellular and molecular biology of vertebrate hard tissues. Ciba Found Symp. 1988;136:42-52.

40. Maximov A. Cultures of blood leucocytes. From leucocyte and monocyte to connective tissue. Arch exp Zellforsch. 1928;5:169-178.

41. Jacoby F. Macrophages. In: Willmer E (ed). Cells and tissues in culture. Acad Press. 1965;1:1-93.

42. Luria EA, Panasyuk AF, Friedenstein AJ. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion. 1971;11:345-349.

43. Luria E, et al. Colony forming fibroblast precursors in circulating blood. Bull Exp Biol Med (in press). [1989].

44. Piersma AH, Ploemacher RE, Brockbank KG. Migration of fibroblastoid stromal cells in murine blood. Cell Tissue Kinet. 1985;18:589-595.

Sources

1. Friedenstein A. Stromal-Hematopoietic Interrelationships: Maximov's Ideas and Modern Models. In: Neth R, et al, editors. Modern trends in human leukemia VIII. Berlin. 1989:159-167.

2. Friedenstein A. Stromal-Hematopoietic Interrelationships: Maximov's Ideas and Modern Models. Haematol. Bluttransf. 1989;32.

Republished from Modern Trends in Human Leukemia VIII (1989), Ed. R. Neth, with kind permission by Springer Science and Business Media.

" ["~DETAIL_TEXT"]=> string(26087) "

The idea of stromal-hematopoietic cell interactions was the essential part of Alexander Maximov's theory of hematopoiesis, which he proposed more than 60 years ago. According to Maximov (see Figs. 1-4), committed hematopoietic precursors descend from the hematopoietic stem cells due to local impacts generated by marrow stroma; this creates the conditions for hematopoietic cell differentiation [1]. Maximov's theory was far ahead of his time, and, though Maximov was highly respected in the scientific community, his concept of local "differentiation conditions" operative in hematopoiesis was met with particular skepticism. Today, Maximov's idea raises no doubt; in fact, it constitutes the essence of the problem of hematopoietic microenvironment (HME). What provokes discussions in modern hematology is the exact types of stromal cells responsible for HME and the mechanisms of stromal-hematopoietic cell interactions. Maximov assumed that the stromal cells in question were stromal fibroblasts (reticular cells), but for a long time many experimental hematologists denied this. Only recently has it been possible to apply two experimental models for checking the microenvironmental functions of marrow fibroblasts. The first model is the transfer of HME by heterotopic transplantation of marrow cells; the sccond is the establishment of HME in vitro by stromal cell underlayers in Dexter cultures. 

Heterotopic transplantation of marrow cells results in the formation of marrow organs covered by a bone capsule [2-5]. Their hematopoietic cells are of the recipient origin [6], indicating that engraftment of some category of marrow cells results in the formation of bone and an HME suitable for population by hematopoietic cells and for their proliferation and differentiation. Heterotopic marrow can be retransplanted repeatedly with similar results, provided the recipients are compatible with H-2 antigens of the initial donor, not of the intermediate recipients [7, 8]. This means that HME is transferred by engraftment of the marrow cells which remain unreplaced by the recipient cells. Chromosome typing of clonogenic stromal fibroblasts (CFUf) of the heterotopic marrow confirmed their donor origin [9, 10], and the problem was to check whether stromal fibroblasts were able to transfer HME when grafted heterotopically.

The in vitro descendents of CFUf after several passages compose diploid fibroblast culturcs [11-13]. Tested by heterotopic transplantation, they were found to form bone marrow organs, while engraftment of cultured spleen fibroblasts (the descendents of spleen CFUf) produced lymphoid organs [14, 15]. Thus, cultured marrow fibroblasts appear to be able to transfer bone marrow HME. Depending on the origin of marrow fibroblast cultures (the source CFUf being from red or yellow marrow), their engraftment transferred not only the general pattern of HME, but also such details as the density of hematopoietic cells in a would-be marrow [16].

Cultured marrow fibroblasts produce hematopoietic growth factor (M-CSF, G CFS, GM-CFS, BFUf- and mixed-colony-CSF) which can be detected in the culture medium [17-20]. They regulate proliferation and differentiation of GMCFU: their stimulatory effects were noted when the target marrow contained few spontaneous colonies, the inhibitory effects when large numbers of spontaneous GM-CFU were present [21]. Hematopoietic growth factors are also produced by cloned lines of marrow fibroblasts [22]. However, the direct proof of in vitro microenvironmental competence of marrow fibroblasts was their ability to establish HME in Dexter-type cultures. It has been shown [23] that when used as underlayers, the passaged murine marrow fibroblasts, free from macro phages and endothelial cells, supported hematopoiesis if seeded with stromal cell-depleted marrow suspensions.

Thus, cultured marrow fibroblasts transfer HME, release hematopoietic growth factors in vitro, and are capable of presenting them in a proper way to support hematopoiesis in cultures. This confirms Maximov's hypothesis of the role of marrow fibroblasts in hematopoiesis.

The population of marrow fibroblasts is probably a heterogeneous one, and there is no evidence that marrow fibroblasts which produce or present hematopoietic growth factors are the same cells which transfer HME, and vice versa. It may well be that there are several subpopulations of marrow fibroblasts with different microenvironmental functions. At present, fibroblasts including those from nonhematopoietic and hematopoietic organs look much alike, reminiscent of the situation with lymphocytes in Maximov's time. The main and most conclusive sine of fibroblasts (mechanocytes) is interstitial collagen types I and III synthesis, and few markers of their phenotype and genetic diversity have been so far ascertained. The diversity does exist, for instance, between marrow as compared with spleen fibroblasts, which is proved by the results of their heterotopic transplantation. The next question regarding HME seems to be the diversity of marrow fibroblasts including their clonogenic precursor cells.

In primary cultures of marrow cell suspensions the CFUf (CFCf) form adherent-cell colonies which are cell clones [24, 25]. The colonies are composed of fibroblasts which synthesize type-I and -III collagen and fibronectin and lack macrophage markers and VIII-factor-associated antigen [26-30]. Morphologically, the colonies are distinctly heterogeneous within each culture. Some are composed of elongated or blanket-like fibroblasts or of a mixture of both; the colonies may include fat cells or have a mineralized intercellular matrix [39]. These differences can hardly be regarded as markers of CFCf, the diversity not beeing stable at passaging and recloning.

In situ CFCf are outside the cycle arrested in G0 [31]. Marrow fibroblasts possess PDGF receptors [32] and in medium with platelet-poor plasma their proliferation and the CFUf colony formation requires PDGF [34]. It is believed that serum growth factors, which include PDGF, are sufficient for recruitment of CFCf into the cycle and that CFUf colony formation in serum-supplemented medium does not require additional growth stimulation. Yet this is probably not the case.

The efficiency of CFUf colony formation (CFEf) drops close to zero in low-density marrow cultures if they are depleted of nonadherent cells: 85% of CFCf do not proliferate at all or pass through one to three cell doublings (Fig. 1). On the other hand, the CFEf increases dramatically when such adherent marrow cell cultures are supplemented with irradiated marrow feeder cells or with platelets. This colony-stimulating activity is not replaced by additional PDGF and is expressed only in the serum-rich medium. Being stimulated by platelets each fibroblast precursor present in marrow cell suspensions turns out to be a clonogenic stromal cell (Fig. 1).

2009_Friedenstein_Fig01.jpg

Figure 1. CFUf colony formation in mice adherent marrow cell cultures.
Cultures were initiated by injecting 5×105 mechanically (white columns) or 5×104 trypzinised (black columns) marrow cells per culture flask (25 cm2). Two hours after explantation the nonadherent cells were decanted from all cultures and further cultivation accomplished in aMEM medium plus 20% embryonal calf serum, part of the cultures (G) being additionally suplemented with 107 irradiated (60 Gy) marrow cells. Abscissa: A - E - fibroblast foci, fibroblast colonies and single fibroblasts in feeder non-supplemented cultures. A - single fibroblasts in one day cultures; B - F - 10 day cultures. B - single fibroblasts, C - two fibroblasts foci, D - three-eight fibroblasts foci, E - nine-forty nine fibroblasts foci, F - fibroblast colonies composed of 50 and more fibroblasts, Σ-sum of B, C, D, E and F per culture. G - fibroblasts colonies in 10 days feeder-supplemented cultures. Ordinate: mean numbers (M ± m) of single fibroblasts, fibroblast foci and fibroblast colonies for 3-5 cultures.

Thus, nonstromal marrow cells which accompany CFCf in marrow cultures (probably megakaryocytes) provide growth-stimulating factors for CFUf colony formation. There are indications that CFCf are sensitive also to other growth-stimulating factors which induce the formation of fibroblast colonies with a different composition of matrix proteins. It has been reported [35] that marrow cells cultured in methylcelluloseclotted plasma with cortisone and PHA-stimulated leukocyte-conditioned medium produced fibroblast colonies with collagen type IV and laminin, in addition to collagen types I and III and fibronectin present in CFUf colonies, in liquid cultures with the serum-supplemented medium. The differences suggest either that there is a diversity of CFCf, which also require different colony-stillulating factors, or that the same CFCf can generate different descendents, depending on the stimulating factors used to induce colony formation.

Marrow CFCf diversity was demonstrated with regard to their proliferative and differentiative potencies. Only a small portion (10%) of single CFUf colonies transferred HME when grafted heterotopically, i. e., formed bone marrow organs [36]. At least 30% of CFCf appeared to be highly proliferative cells which provide single-colony-derived fibroblast cultures with 20-30 population doublings. When tested by transplantation of cells in diffusion chambers, 20% of these cultures formed simultaneously bone, cartilage, and reticular-like tissue, 30% formed only bone, and 27% only reticular-like tissue. The number of osteogenic units in late passages of cultured fibroblasts exeeded by far the total numbers of the initially explanted marrow cells, indicating that osteogenic precursors intensively multiplied within cultures [37]. There are reasons to consider CFCf with osteochondrogenic potencies as being osteogenic stem cells [38, 39]. One can assume that some of them are the progenitors of a marrow stromallineage which includes committed osteogenic precursors, mature bone cells, and microenvironmentally competent fibroblasts (reticular cells).

2009-3-en-Friedenstein-Figure-2-a_01.JPG

Figure 2. Type I collagen in 12 day CFUf colony of guinea pig periferal blood leukocytes.

A. Anticollagen antiserum, immunoperoxidase reaction


2009-3-en-Friedenstein-Figure-2-b_02.JPG

B. Live culture

The assumption is backed up by the obligatory association of HME transfer with bone formation, which applies to heterotopic transplantation of both freshly isolated marrow and single-CFUf-derived fibroblast colonies. In the heterotopic marrow the CFUf are of donor origin [9, 10], and it is reasonable to assume that the same applies to the microenvironmentally competent reticular cells. However, the ability of fibroblasts from single CFUf-colony-derived heterotopic bone marrow organs to support hematopoiesis in vitro, and their donor origin (which would be the proof of the above speculation) was not tested up to now. Anyway, the hierarchy of marrow precursors awaits further studies.

As far as Maximow's contribution to the problems of HME is concerned, it is impossible to omit his last work, entitled "Cultures of blood leukocytes. From lymphocyte and monocyte to connective tissue." [40]. It describes the formation of fibroblasts in plasma-clot cultures of guinea-pig blood cells. Subsequently, his results were put in question on the grounds of two possible objections, namely that the source of fibroblasts might be fragments of vessel walls which contaminate the blood during sampling, and that the cells in question were not fibroblasts (for references, see [41]).

Figure 3 A, B. Fibroblasts and collagen fibrils in 16 day CTUf colonies of rabbit periferal blood leukocytes. E. M.

2009-3-en-Friedenstein-Figure-3-a.JPG

2009-3-en-Friedenstein-Figure-3-b_01.JPG

2009-3-en-Friedenstein-Figure-4.jpg

Figure 4. Professor Alexander Maximov

The first objection proved to be invalid when a CFUf colony assay was carried out with blood cells. It turned out that the incidence of CFUf colonies in guinea-pig and rabbit leukocyte cultures did not change with the number of punctures performed for blood sampling [42]. It has also been shown that fibroblasts in blood-derived CFUf colonies synthesize collagen type I [43] and lack VIII-factor-associated antigen and macrophage determinant MacI [44], which confirms their fibroblast nature (Fig. 2, 3). It remains unknown from where CFUf migrate into blood, where they settle (if they do), and why blood-derived CFUf are not detectable in some mammals, including human beings. The presence of fibroblast precursors in blood discovered by Maximov is related to many unsolved problems of HME, in particular, to the possibility of CFUf repopulation; CFUf circulation in blood does not prove it at all.


The story of the circulating fibroblast precursor cells demonstrates once again that not only Maximov's ideas, but also his experimental results are so topical that Professor Alexander Maximov almost remains a participant of present-day research (Fig. 5).

2009-3-en-Friedenstein-Figure-5-a.jpg

Figure 5. Maximov in his tissue culture laboratory in the Military Medical Academy in Petersburg (1915).

A. Preparation of plasma for plasma-clot cultures


2009-3-en-Friedenstein-Figure-5-b.jpg

B. Placing tissue fragments in culture medium


2009-3-en-Friedenstein-Figure-5-c.jpg

C. Kaissug hangrug-drop cultures in hallow-ground microscope slides


References

1. Maximov AA. Über experimentelle Erzeugung von Knochenmarks-Gewebe. Anat Anz. 1906;28:24-38.

2. Tavassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968;161:54-56.

3. Tavassoli M, Maniatis A, Binder RA, Crosby WH. Studies on marrow histogenesis. Proc Soc exp BioI Med. 1971;138:868-870.

4. Tavassoli M, Friedenstein A. Hemopoietic stromal microenvironment. Am J Hemat. 1983;15:195-203.

5. Friedenstein AJ, Latzinik NV, Grosheva AO, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured marrow cells in porous sponges. Exp Hematol. 1982;10:217-227.

6. Friedenstein AJ, Petrakova KV, Kuralesova AI, Frolova OF. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hemopoietic tissues. Transplantation. 1968;6:230-247.

7. Friedenstein AJ, Kuralesova A. Osteogenic precursors of bone marrow in radiation chimeras. Transplantation. 1971;12:99-108.

8. Friedenstein A, Luria E. Cellular bases of hemopoietic microenvironment. Moscow: Izd-vo "Medicina"; 1980. Russian.

9. Friedenstein A, et al. Origin of bone marrow stromal mechanocytes in radiochimeras and in heterotopic transplants. Exper Hematol. 1978;6:440-444.

10. Friedenstein A. Precursor cells of mechanocytes. Inter Rev Cytol. 1976;47:327-359.

11. Friedenstein A, Chailakhjan RV, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393-403.

12. Miskarova ED, Lalykina KS, Kokorin IN, Friedenstein AJ. Osteogenic potencies of prolonged diploid cultures of myeloid cells. Bull Exp BioI Med. 1970;56:78-81.

13. Friedenstein A. Determined and inducible osteogenic precursor cells. Ciba Found Sympos (new series). 1973;11:170-185.

14. Friedenstein AJ, et al. Stromal cells responsible for transferring the microenvironment of hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331-340.

15. Friedenstein A. Stromal mechanocytes of bone marrow: cloning in vitro and retransplantation in vivo. In: Thierfelder S, Rodt H, Kolb H (eds). Immunology of bone marrow transplantation. Springer-Verlag. 1980;19-29.

16. Patt HM, Maloney MA, Flannery ML. Hemopoietic microenvironment transfer by stromal fibroblasts derived from bone marrow varying in cellularity. Exp Hematol. 1982;10:738-742.

17. Akasaka M, et al. Production of monoclonal antibody to adult bone marrow preadipocite line (H-I/A). Exp Hematol. 1987;15:610-618.

18. Brockbank K, Van Peer CM. Colony-stimulating activity produced by hemopoietic organ fibroblastoid cells in vitro. Acta Hematol. 1983;69:369-476.

19. Zucali J, et al. Interleukin I stimulates fibroblasts to produce granulocyte macrophage colony-stimulating activity and prostoglandin E2. J Clin Invest. 1986;78:1306-1323.

20. Lee M, Segal GM, Bagby GC. Interleukin I induces human bone marrow-derived fibroblasts to produce multilineage hemopoietic growth factors. Exper Hematol. 1987;15:983-988.

21. Brondy V, et al. Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hemopoietic growth factors. Blood. 1986;68:530-537.

22. Greenberger BR, Wilson FD, Woo L. Granulopoetic effects of human bone marrow fibroblastic cells and abnormalities in "granulopoietic microenvironment". Blood. 1981;58:557-563.

23. Brockbank KCM, De Jong JP, Piersma AH, Voerman JSA. Hemopoiesis on purified bone-marrow-derived reticular fibroblasts in vitro. Exper Hematol. 1986;14:386-394.

24. Latzinik N, et al. The content of stromal colony-forming cells (FCFC) in the mousebone marrow and the clonal nature of  FCFC-derived fibroblast colonies. Ontogenesis. 1986;1:27-35.

25. Friedenstein A, et al. On clonality of CFUf-derived marrow stromal colonies (in press). [1989].

26. Latzinik NV, Sidorovich SY, Tarchanova IA. Studies of surface receptors of the stromal mechanocytes of hemopoietic organs. Immunology. 1980;1:26-28.

27. Castro-Malaspina H, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFUf) and their progeny. Blood. 1980;56:286-301.

28. Wilson FD, O'Grady L, Mc Meil GJ, Munn SL. The formation bone marrow-derived fibroblastic plaques in vitro. Exper Hematol. 1974;2:343-349.

29. Friedenstein A, et al. Precursors for fibroblasts in different populations of hemopoietic cells as detected by the in vitro colony assay method. Exper Hematol. 1974;2:83-92.

30. Friedenstein AJ, Gorskaya UF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hemopoietic organs. Exper Hematol. 1976;4:267-274.

31. Keilis-Borok IV, Latzinik NV, Epichina SY, Friedenstein AJ. Dynamics of the formation of fibroblast colonies in monolayer cultures of bone marrow, according to 3H-thymidine incorporation experiments. Cytologia. 1971;13:1402-1409.

32. Bowen-Pope DF, Seifert RA, Ross R. The platelet-derived growth factor receptor. In: Boyton L, Leffert H (eds). Control of animal cell proliferation, Acad Press. 1985;1:281-312.

33. McIntyre AP, Bjornson BH. Human bone marrow stromal cell colonies: response to hydrocortisone and dependence of platelet-derived growth factor. Exper Hematol. 1986;14:833-839.

34. Wang OR, Wolf  NS. The effect of several growth factors on the in vitro growth of bone marrow stromal cells. Exper Hematol. 1987;15:610.

35. Lim B, et al. Characterization of reticulofibroblastoid colonies (CFU-RF) derived from bone marrow and long-term marrow culture monolayers. J Cellul Physiol. 1986;127:45-54.

36. Chailakyan RK, Gerasimov YF, Friedenstein AJ. Content of osteogenic precursor cells in the bone marrow and their proliferation in cultures. Bull Exp Biol Med. 1984;11:605-608.

37. Gerasimov Y, Friedenstein AJ, Chajlakjan RK, Shiskova VV. Differential potentiality of clonal strains of bone marrow fibroblasts. Bull Exp Biol Med. 1986;6:717-719.

38. Friedenstein AJ, Chajlachyan RK, Gerasimov YF. Bone marrow osteogenic stem cells in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263-272.

39. Owen ME, Friedenstein AJ. Stromal stem cells: marrow derived osteogenic precursors. In: Evered D, Harnett S. (eds). Cellular and molecular biology of vertebrate hard tissues. Ciba Found Symp. 1988;136:42-52.

40. Maximov A. Cultures of blood leucocytes. From leucocyte and monocyte to connective tissue. Arch exp Zellforsch. 1928;5:169-178.

41. Jacoby F. Macrophages. In: Willmer E (ed). Cells and tissues in culture. Acad Press. 1965;1:1-93.

42. Luria EA, Panasyuk AF, Friedenstein AJ. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion. 1971;11:345-349.

43. Luria E, et al. Colony forming fibroblast precursors in circulating blood. Bull Exp Biol Med (in press). [1989].

44. Piersma AH, Ploemacher RE, Brockbank KG. Migration of fibroblastoid stromal cells in murine blood. Cell Tissue Kinet. 1985;18:589-595.

Sources

1. Friedenstein A. Stromal-Hematopoietic Interrelationships: Maximov's Ideas and Modern Models. In: Neth R, et al, editors. Modern trends in human leukemia VIII. Berlin. 1989:159-167.

2. Friedenstein A. Stromal-Hematopoietic Interrelationships: Maximov's Ideas and Modern Models. Haematol. Bluttransf. 1989;32.

Republished from Modern Trends in Human Leukemia VIII (1989), Ed. R. Neth, with kind permission by Springer Science and Business Media.

" ["DETAIL_TEXT_TYPE"]=> string(4) "html" ["~DETAIL_TEXT_TYPE"]=> string(4) "html" ["PREVIEW_TEXT"]=> string(0) "" ["~PREVIEW_TEXT"]=> string(0) "" ["PREVIEW_TEXT_TYPE"]=> string(4) "text" ["~PREVIEW_TEXT_TYPE"]=> string(4) "text" ["PREVIEW_PICTURE"]=> NULL ["~PREVIEW_PICTURE"]=> NULL ["LANG_DIR"]=> string(4) "/ru/" ["~LANG_DIR"]=> string(4) "/ru/" ["SORT"]=> string(3) "500" ["~SORT"]=> string(3) "500" ["CODE"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" ["~CODE"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" ["EXTERNAL_ID"]=> string(3) "904" ["~EXTERNAL_ID"]=> string(3) "904" ["IBLOCK_TYPE_ID"]=> string(7) "journal" ["~IBLOCK_TYPE_ID"]=> string(7) "journal" ["IBLOCK_CODE"]=> string(7) "volumes" ["~IBLOCK_CODE"]=> string(7) "volumes" ["IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["~IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["LID"]=> string(2) "s2" ["~LID"]=> string(2) "s2" ["EDIT_LINK"]=> NULL ["DELETE_LINK"]=> NULL ["DISPLAY_ACTIVE_FROM"]=> string(0) "" ["IPROPERTY_VALUES"]=> array(18) { ["ELEMENT_META_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["ELEMENT_META_KEYWORDS"]=> string(0) "" ["ELEMENT_META_DESCRIPTION"]=> string(288) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные моделиStromal-hematopoietic interrelationships: Maximov's ideas and modern models" ["ELEMENT_PREVIEW_PICTURE_FILE_ALT"]=> string(8018) "<h3>От редакции</h3> <p class="bodytext">Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.<br /><br />С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток <em>in vivo</em>. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.<br /><br />Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).<br /><br />Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья &quot;Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели&quot; (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).<br /><br />Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих &quot;стромальных клеток&quot;.<br /><br />Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся <em>de novo</em> клеток к классу фибробластов.<br /><br />Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.</p>" ["ELEMENT_PREVIEW_PICTURE_FILE_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["ELEMENT_DETAIL_PICTURE_FILE_ALT"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["ELEMENT_DETAIL_PICTURE_FILE_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_META_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_META_KEYWORDS"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_META_DESCRIPTION"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_PICTURE_FILE_ALT"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_PICTURE_FILE_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_PICTURE_FILE_NAME"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" ["SECTION_DETAIL_PICTURE_FILE_ALT"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_DETAIL_PICTURE_FILE_TITLE"]=> string(213) "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" ["SECTION_DETAIL_PICTURE_FILE_NAME"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" ["ELEMENT_PREVIEW_PICTURE_FILE_NAME"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" ["ELEMENT_DETAIL_PICTURE_FILE_NAME"]=> string(100) "vzaimootnosheniya-mezhdu-gemopoeticheskimi-stvolovymi-kletkami-i-kletkami-stromy-idei-maksimova-i-so" } ["FIELDS"]=> array(1) { ["IBLOCK_SECTION_ID"]=> string(2) "37" } ["PROPERTIES"]=> array(18) { ["KEYWORDS"]=> array(36) { ["ID"]=> string(2) "19" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:46:01" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(27) "Ключевые слова" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "KEYWORDS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "19" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "4" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "Y" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "Y" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> bool(false) ["VALUE"]=> bool(false) ["DESCRIPTION"]=> bool(false) ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> bool(false) ["~DESCRIPTION"]=> bool(false) ["~NAME"]=> string(27) "Ключевые слова" ["~DEFAULT_VALUE"]=> string(0) "" } ["SUBMITTED"]=> array(36) { ["ID"]=> string(2) "20" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Дата подачи" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "SUBMITTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "20" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Дата подачи" ["~DEFAULT_VALUE"]=> NULL } ["ACCEPTED"]=> array(36) { ["ID"]=> string(2) "21" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(25) "Дата принятия" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "ACCEPTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "21" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(25) "Дата принятия" ["~DEFAULT_VALUE"]=> NULL } ["PUBLISHED"]=> array(36) { ["ID"]=> string(2) "22" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Дата публикации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "PUBLISHED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "22" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Дата публикации" ["~DEFAULT_VALUE"]=> NULL } ["CONTACT"]=> array(36) { ["ID"]=> string(2) "23" ["TIMESTAMP_X"]=> string(19) "2015-09-03 14:43:05" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(14) "Контакт" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "CONTACT" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "23" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(14) "Контакт" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHORS"]=> array(36) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12503" } ["VALUE"]=> array(1) { [0]=> string(3) "903" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "903" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_RU"]=> array(36) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12489" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">А. Я. Фриденштейн</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

А. Я. Фриденштейн

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_RU"]=> array(36) { ["ID"]=> string(2) "26" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(22) "Организации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "26" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12490" ["VALUE"]=> array(2) { ["TEXT"]=> string(634) "<p class="bodytext"><b>От редакции</b><br />Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.<br> Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия <br />E-mail: <a href="javascript:linkTo_UnCryptMailto('qempxs.qevoixmrkDgxx1nsyvrep2gsq');">marketing@<span style="display:none;">spam is bad</span>ctt-journal.com<br /><br /></a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(526) "

От редакции
Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.
Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия
E-mail: marketing@spam is badctt-journal.com

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(22) "Организации" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_RU"]=> array(36) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12491" ["VALUE"]=> array(2) { ["TEXT"]=> string(8018) "<h3>От редакции</h3> <p class="bodytext">Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.<br /><br />С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток <em>in vivo</em>. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.<br /><br />Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).<br /><br />Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья &quot;Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели&quot; (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).<br /><br />Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих &quot;стромальных клеток&quot;.<br /><br />Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся <em>de novo</em> клеток к классу фибробластов.<br /><br />Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(7872) "

От редакции

Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.

С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток in vivo. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.

Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).

Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).

Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих "стромальных клеток".

Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся de novo клеток к классу фибробластов.

Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["DOI"]=> array(36) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12492" ["VALUE"]=> string(29) "10.3205/ctt-2009-en-000033.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2009-en-000033.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_EN"]=> array(36) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12496" ["VALUE"]=> array(2) { ["TEXT"]=> string(58) "<p class="Autor">A. Friedenstein</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(36) "

A. Friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_EN"]=> array(36) { ["ID"]=> string(2) "38" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Organization" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "38" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Organization" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_EN"]=> array(36) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12497" ["VALUE"]=> array(2) { ["TEXT"]=> string(183) "<p><b>Republished from Modern Trends in Human Leukemia VIII (1989), <br>Ed. R. Neth, with kind permission by Springer Science and Business Media.</b></p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(153) "

Republished from Modern Trends in Human Leukemia VIII (1989),
Ed. R. Neth, with kind permission by Springer Science and Business Media.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["NAME_EN"]=> array(36) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12493" ["VALUE"]=> string(75) "Stromal-hematopoietic interrelationships: Maximov's ideas and modern models" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(75) "Stromal-hematopoietic interrelationships: Maximov's ideas and modern models" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" } ["FULL_TEXT_RU"]=> array(36) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["PDF_RU"]=> array(36) { ["ID"]=> string(2) "43" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF RUS" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_RU" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "43" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12494" ["VALUE"]=> string(3) "591" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "591" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF RUS" ["~DEFAULT_VALUE"]=> string(0) "" } ["PDF_EN"]=> array(36) { ["ID"]=> string(2) "44" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF ENG" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "44" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12498" ["VALUE"]=> string(3) "601" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "601" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF ENG" ["~DEFAULT_VALUE"]=> string(0) "" } ["NAME_LONG"]=> array(36) { ["ID"]=> string(2) "45" ["TIMESTAMP_X"]=> string(19) "2023-04-13 00:55:00" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(72) "Название (для очень длинных заголовков)" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "NAME_LONG" ["DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "45" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(80) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(72) "Название (для очень длинных заголовков)" ["~DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } } } ["DISPLAY_PROPERTIES"]=> array(8) { ["AUTHOR_EN"]=> array(37) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12496" ["VALUE"]=> array(2) { ["TEXT"]=> string(58) "<p class="Autor">A. Friedenstein</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(36) "

A. Friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(36) "

A. Friedenstein

" } ["SUMMARY_EN"]=> array(37) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12497" ["VALUE"]=> array(2) { ["TEXT"]=> string(183) "<p><b>Republished from Modern Trends in Human Leukemia VIII (1989), <br>Ed. R. Neth, with kind permission by Springer Science and Business Media.</b></p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(153) "

Republished from Modern Trends in Human Leukemia VIII (1989),
Ed. R. Neth, with kind permission by Springer Science and Business Media.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(153) "

Republished from Modern Trends in Human Leukemia VIII (1989),
Ed. R. Neth, with kind permission by Springer Science and Business Media.

" } ["DOI"]=> array(37) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12492" ["VALUE"]=> string(29) "10.3205/ctt-2009-en-000033.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/ctt-2009-en-000033.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(29) "10.3205/ctt-2009-en-000033.01" } ["NAME_EN"]=> array(37) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12493" ["VALUE"]=> string(75) "Stromal-hematopoietic interrelationships: Maximov's ideas and modern models" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(75) "Stromal-hematopoietic interrelationships: Maximov's ideas and modern models" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(75) "Stromal-hematopoietic interrelationships: Maximov's ideas and modern models" } ["AUTHORS"]=> array(38) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12503" } ["VALUE"]=> array(1) { [0]=> string(3) "903" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "903" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(58) "A. Friedenstein" ["LINK_ELEMENT_VALUE"]=> bool(false) } ["AUTHOR_RU"]=> array(37) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12489" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">А. Я. Фриденштейн</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

А. Я. Фриденштейн

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(51) "

А. Я. Фриденштейн

" } ["SUMMARY_RU"]=> array(37) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12491" ["VALUE"]=> array(2) { ["TEXT"]=> string(8018) "<h3>От редакции</h3> <p class="bodytext">Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.<br /><br />С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток <em>in vivo</em>. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.<br /><br />Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).<br /><br />Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья &quot;Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели&quot; (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).<br /><br />Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих &quot;стромальных клеток&quot;.<br /><br />Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся <em>de novo</em> клеток к классу фибробластов.<br /><br />Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(7872) "

От редакции

Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.

С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток in vivo. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.

Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).

Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).

Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих "стромальных клеток".

Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся de novo клеток к классу фибробластов.

Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(7872) "

От редакции

Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.

С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток in vivo. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.

Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).

Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).

Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих "стромальных клеток".

Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся de novo клеток к классу фибробластов.

Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.

" } ["ORGANIZATION_RU"]=> array(37) { ["ID"]=> string(2) "26" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(22) "Организации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "26" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12490" ["VALUE"]=> array(2) { ["TEXT"]=> string(634) "<p class="bodytext"><b>От редакции</b><br />Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.<br> Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия <br />E-mail: <a href="javascript:linkTo_UnCryptMailto('qempxs.qevoixmrkDgxx1nsyvrep2gsq');">marketing@<span style="display:none;">spam is bad</span>ctt-journal.com<br /><br /></a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(526) "

От редакции
Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.
Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия
E-mail: marketing@spam is badctt-journal.com

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(22) "Организации" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(526) "

От редакции
Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.
Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия
E-mail: marketing@spam is badctt-journal.com

" } } } [3]=> array(49) { ["IBLOCK_SECTION_ID"]=> string(2) "37" ["~IBLOCK_SECTION_ID"]=> string(2) "37" ["ID"]=> string(3) "905" ["~ID"]=> string(3) "905" ["IBLOCK_ID"]=> string(1) "2" ["~IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["~NAME"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["ACTIVE_FROM"]=> NULL ["~ACTIVE_FROM"]=> NULL ["TIMESTAMP_X"]=> string(19) "19.06.2017 15:54:59" ["~TIMESTAMP_X"]=> string(19) "19.06.2017 15:54:59" ["DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me/" ["~DETAIL_PAGE_URL"]=> string(145) "/ru/archive/tom-1-nomer-3/programmnye-stati/on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me/" ["LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["~LIST_PAGE_URL"]=> string(12) "/ru/archive/" ["DETAIL_TEXT"]=> string(494) "

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

" ["~DETAIL_TEXT"]=> string(494) "

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

" ["DETAIL_TEXT_TYPE"]=> string(4) "html" ["~DETAIL_TEXT_TYPE"]=> string(4) "html" ["PREVIEW_TEXT"]=> string(0) "" ["~PREVIEW_TEXT"]=> string(0) "" ["PREVIEW_TEXT_TYPE"]=> string(4) "text" ["~PREVIEW_TEXT_TYPE"]=> string(4) "text" ["PREVIEW_PICTURE"]=> NULL ["~PREVIEW_PICTURE"]=> NULL ["LANG_DIR"]=> string(4) "/ru/" ["~LANG_DIR"]=> string(4) "/ru/" ["SORT"]=> string(3) "500" ["~SORT"]=> string(3) "500" ["CODE"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" ["~CODE"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" ["EXTERNAL_ID"]=> string(3) "905" ["~EXTERNAL_ID"]=> string(3) "905" ["IBLOCK_TYPE_ID"]=> string(7) "journal" ["~IBLOCK_TYPE_ID"]=> string(7) "journal" ["IBLOCK_CODE"]=> string(7) "volumes" ["~IBLOCK_CODE"]=> string(7) "volumes" ["IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["~IBLOCK_EXTERNAL_ID"]=> string(1) "2" ["LID"]=> string(2) "s2" ["~LID"]=> string(2) "s2" ["EDIT_LINK"]=> NULL ["DELETE_LINK"]=> NULL ["DISPLAY_ACTIVE_FROM"]=> string(0) "" ["IPROPERTY_VALUES"]=> array(18) { ["ELEMENT_META_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["ELEMENT_META_KEYWORDS"]=> string(0) "" ["ELEMENT_META_DESCRIPTION"]=> string(264) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" ["ELEMENT_PREVIEW_PICTURE_FILE_ALT"]=> string(308) "<h3>Аудиозапись</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p>" ["ELEMENT_PREVIEW_PICTURE_FILE_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["ELEMENT_DETAIL_PICTURE_FILE_ALT"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["ELEMENT_DETAIL_PICTURE_FILE_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_META_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_META_KEYWORDS"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_META_DESCRIPTION"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_PICTURE_FILE_ALT"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_PICTURE_FILE_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_PICTURE_FILE_NAME"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" ["SECTION_DETAIL_PICTURE_FILE_ALT"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_DETAIL_PICTURE_FILE_TITLE"]=> string(144) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)" ["SECTION_DETAIL_PICTURE_FILE_NAME"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" ["ELEMENT_PREVIEW_PICTURE_FILE_NAME"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" ["ELEMENT_DETAIL_PICTURE_FILE_NAME"]=> string(100) "on-stromal-hematopoietic-interrelationships-maximov-s-ideas-and-modern-models-lektsiya-na-wilsede-me" } ["FIELDS"]=> array(1) { ["IBLOCK_SECTION_ID"]=> string(2) "37" } ["PROPERTIES"]=> array(18) { ["KEYWORDS"]=> array(36) { ["ID"]=> string(2) "19" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:46:01" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(27) "Ключевые слова" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "KEYWORDS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "19" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "4" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "Y" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "Y" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> bool(false) ["VALUE"]=> bool(false) ["DESCRIPTION"]=> bool(false) ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> bool(false) ["~DESCRIPTION"]=> bool(false) ["~NAME"]=> string(27) "Ключевые слова" ["~DEFAULT_VALUE"]=> string(0) "" } ["SUBMITTED"]=> array(36) { ["ID"]=> string(2) "20" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Дата подачи" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "SUBMITTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "20" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Дата подачи" ["~DEFAULT_VALUE"]=> NULL } ["ACCEPTED"]=> array(36) { ["ID"]=> string(2) "21" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(25) "Дата принятия" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(8) "ACCEPTED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "21" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(25) "Дата принятия" ["~DEFAULT_VALUE"]=> NULL } ["PUBLISHED"]=> array(36) { ["ID"]=> string(2) "22" ["TIMESTAMP_X"]=> string(19) "2015-09-02 17:21:42" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Дата публикации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "PUBLISHED" ["DEFAULT_VALUE"]=> NULL ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "22" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(8) "DateTime" ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Дата публикации" ["~DEFAULT_VALUE"]=> NULL } ["CONTACT"]=> array(36) { ["ID"]=> string(2) "23" ["TIMESTAMP_X"]=> string(19) "2015-09-03 14:43:05" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(14) "Контакт" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "CONTACT" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "23" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(14) "Контакт" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHORS"]=> array(36) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12516" } ["VALUE"]=> array(1) { [0]=> string(3) "903" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "903" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_RU"]=> array(36) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12505" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">А. Я. Фриденштейн</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

А. Я. Фриденштейн

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_RU"]=> array(36) { ["ID"]=> string(2) "26" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(22) "Организации" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "26" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(22) "Организации" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_RU"]=> array(36) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12506" ["VALUE"]=> array(2) { ["TEXT"]=> string(308) "<h3>Аудиозапись</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(252) "

Аудиозапись

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["DOI"]=> array(36) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12507" ["VALUE"]=> string(29) "10.3205/wsc-2009-en-000041.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/wsc-2009-en-000041.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" } ["AUTHOR_EN"]=> array(36) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12508" ["VALUE"]=> array(2) { ["TEXT"]=> string(71) "<p class="Autor">By Alexander J. Friedenstein</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(49) "

By Alexander J. Friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["ORGANIZATION_EN"]=> array(36) { ["ID"]=> string(2) "38" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Organization" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(15) "ORGANIZATION_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "38" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Organization" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["SUMMARY_EN"]=> array(36) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12509" ["VALUE"]=> array(2) { ["TEXT"]=> string(291) "<h3>Audio</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(235) "

Audio

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["NAME_EN"]=> array(36) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12510" ["VALUE"]=> string(120) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(120) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" } ["FULL_TEXT_RU"]=> array(36) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12515" ["VALUE"]=> array(2) { ["TEXT"]=> string(572) "<p> The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, <a href="http://www.ctt-journal.com">http://www.ctt-journal.com</a>) </p> <p> URL: <a href="http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenstein-1988-wilsede.pdf" target="_blank">http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(494) "

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } } ["PDF_RU"]=> array(36) { ["ID"]=> string(2) "43" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF RUS" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_RU" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "43" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12511" ["VALUE"]=> string(3) "602" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "602" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF RUS" ["~DEFAULT_VALUE"]=> string(0) "" } ["PDF_EN"]=> array(36) { ["ID"]=> string(2) "44" ["TIMESTAMP_X"]=> string(19) "2015-09-09 16:05:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(7) "PDF ENG" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(6) "PDF_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "F" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "44" ["FILE_TYPE"]=> string(18) "doc, txt, rtf, pdf" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12512" ["VALUE"]=> string(3) "603" ["DESCRIPTION"]=> NULL ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(3) "603" ["~DESCRIPTION"]=> NULL ["~NAME"]=> string(7) "PDF ENG" ["~DEFAULT_VALUE"]=> string(0) "" } ["NAME_LONG"]=> array(36) { ["ID"]=> string(2) "45" ["TIMESTAMP_X"]=> string(19) "2023-04-13 00:55:00" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(72) "Название (для очень длинных заголовков)" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "NAME_LONG" ["DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "45" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(80) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> NULL ["VALUE"]=> string(0) "" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(0) "" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(72) "Название (для очень длинных заголовков)" ["~DEFAULT_VALUE"]=> array(2) { ["TYPE"]=> string(4) "HTML" ["TEXT"]=> string(0) "" } } } ["DISPLAY_PROPERTIES"]=> array(8) { ["AUTHOR_EN"]=> array(37) { ["ID"]=> string(2) "37" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(6) "Author" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "37" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12508" ["VALUE"]=> array(2) { ["TEXT"]=> string(71) "<p class="Autor">By Alexander J. Friedenstein</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(49) "

By Alexander J. Friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(6) "Author" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(49) "

By Alexander J. Friedenstein

" } ["SUMMARY_EN"]=> array(37) { ["ID"]=> string(2) "39" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:02:59" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(21) "Description / Summary" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_EN" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "39" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12509" ["VALUE"]=> array(2) { ["TEXT"]=> string(291) "<h3>Audio</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(235) "

Audio

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(21) "Description / Summary" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(235) "

Audio

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" } ["DOI"]=> array(37) { ["ID"]=> string(2) "28" ["TIMESTAMP_X"]=> string(19) "2016-04-06 14:11:12" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(3) "DOI" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(3) "DOI" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "28" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12507" ["VALUE"]=> string(29) "10.3205/wsc-2009-en-000041.01" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(29) "10.3205/wsc-2009-en-000041.01" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(3) "DOI" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(29) "10.3205/wsc-2009-en-000041.01" } ["NAME_EN"]=> array(37) { ["ID"]=> string(2) "40" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:49:47" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(4) "Name" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "NAME_EN" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "80" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "40" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> NULL ["USER_TYPE_SETTINGS"]=> NULL ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12510" ["VALUE"]=> string(120) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> string(120) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(4) "Name" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(120) "On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio)" } ["AUTHORS"]=> array(38) { ["ID"]=> string(2) "24" ["TIMESTAMP_X"]=> string(19) "2015-09-03 10:45:07" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(7) "AUTHORS" ["DEFAULT_VALUE"]=> string(0) "" ["PROPERTY_TYPE"]=> string(1) "E" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "Y" ["XML_ID"]=> string(2) "24" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "3" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "Y" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(13) "EAutocomplete" ["USER_TYPE_SETTINGS"]=> array(9) { ["VIEW"]=> string(1) "E" ["SHOW_ADD"]=> string(1) "Y" ["MAX_WIDTH"]=> int(0) ["MIN_HEIGHT"]=> int(24) ["MAX_HEIGHT"]=> int(1000) ["BAN_SYM"]=> string(2) ",;" ["REP_SYM"]=> string(1) " " ["OTHER_REP_SYM"]=> string(0) "" ["IBLOCK_MESS"]=> string(1) "N" } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> array(1) { [0]=> string(5) "12516" } ["VALUE"]=> array(1) { [0]=> string(3) "903" } ["DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(1) { [0]=> string(3) "903" } ["~DESCRIPTION"]=> array(1) { [0]=> string(0) "" } ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> string(0) "" ["DISPLAY_VALUE"]=> string(58) "A. Friedenstein" ["LINK_ELEMENT_VALUE"]=> bool(false) } ["AUTHOR_RU"]=> array(37) { ["ID"]=> string(2) "25" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(12) "Авторы" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(9) "AUTHOR_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "25" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12505" ["VALUE"]=> array(2) { ["TEXT"]=> string(73) "<p class="Autor">А. Я. Фриденштейн</p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(51) "

А. Я. Фриденштейн

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(12) "Авторы" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(51) "

А. Я. Фриденштейн

" } ["SUMMARY_RU"]=> array(37) { ["ID"]=> string(2) "27" ["TIMESTAMP_X"]=> string(19) "2015-09-02 18:01:20" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(29) "Описание/Резюме" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(10) "SUMMARY_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "27" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12506" ["VALUE"]=> array(2) { ["TEXT"]=> string(308) "<h3>Аудиозапись</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(252) "

Аудиозапись

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(29) "Описание/Резюме" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(252) "

Аудиозапись

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

" } ["FULL_TEXT_RU"]=> array(37) { ["ID"]=> string(2) "42" ["TIMESTAMP_X"]=> string(19) "2015-09-07 20:29:18" ["IBLOCK_ID"]=> string(1) "2" ["NAME"]=> string(23) "Полный текст" ["ACTIVE"]=> string(1) "Y" ["SORT"]=> string(3) "500" ["CODE"]=> string(12) "FULL_TEXT_RU" ["DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["PROPERTY_TYPE"]=> string(1) "S" ["ROW_COUNT"]=> string(1) "1" ["COL_COUNT"]=> string(2) "30" ["LIST_TYPE"]=> string(1) "L" ["MULTIPLE"]=> string(1) "N" ["XML_ID"]=> string(2) "42" ["FILE_TYPE"]=> string(0) "" ["MULTIPLE_CNT"]=> string(1) "5" ["TMP_ID"]=> NULL ["LINK_IBLOCK_ID"]=> string(1) "0" ["WITH_DESCRIPTION"]=> string(1) "N" ["SEARCHABLE"]=> string(1) "N" ["FILTRABLE"]=> string(1) "N" ["IS_REQUIRED"]=> string(1) "N" ["VERSION"]=> string(1) "1" ["USER_TYPE"]=> string(4) "HTML" ["USER_TYPE_SETTINGS"]=> array(1) { ["height"]=> int(200) } ["HINT"]=> string(0) "" ["PROPERTY_VALUE_ID"]=> string(5) "12515" ["VALUE"]=> array(2) { ["TEXT"]=> string(572) "<p> The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, <a href="http://www.ctt-journal.com">http://www.ctt-journal.com</a>) </p> <p> URL: <a href="http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenstein-1988-wilsede.pdf" target="_blank">http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...</a> </p>" ["TYPE"]=> string(4) "HTML" } ["DESCRIPTION"]=> string(0) "" ["VALUE_ENUM"]=> NULL ["VALUE_XML_ID"]=> NULL ["VALUE_SORT"]=> NULL ["~VALUE"]=> array(2) { ["TEXT"]=> string(494) "

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

" ["TYPE"]=> string(4) "HTML" } ["~DESCRIPTION"]=> string(0) "" ["~NAME"]=> string(23) "Полный текст" ["~DEFAULT_VALUE"]=> array(2) { ["TEXT"]=> string(0) "" ["TYPE"]=> string(4) "HTML" } ["DISPLAY_VALUE"]=> string(494) "

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

" } } } }

Программные статьи

Программные статьи

						Array
(
    [KEYWORDS] => Array
        (
            [ID] => 19
            [TIMESTAMP_X] => 2015-09-03 10:46:01
            [IBLOCK_ID] => 2
            [NAME] => Ключевые слова
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => KEYWORDS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 19
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 4
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => Y
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => Y
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Ключевые слова
            [~DEFAULT_VALUE] => 
        )

    [SUBMITTED] => Array
        (
            [ID] => 20
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата подачи
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => SUBMITTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 20
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата подачи
            [~DEFAULT_VALUE] => 
        )

    [ACCEPTED] => Array
        (
            [ID] => 21
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата принятия
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => ACCEPTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 21
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата принятия
            [~DEFAULT_VALUE] => 
        )

    [PUBLISHED] => Array
        (
            [ID] => 22
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата публикации
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => PUBLISHED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 22
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата публикации
            [~DEFAULT_VALUE] => 
        )

    [CONTACT] => Array
        (
            [ID] => 23
            [TIMESTAMP_X] => 2015-09-03 14:43:05
            [IBLOCK_ID] => 2
            [NAME] => Контакт
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => CONTACT
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 23
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Контакт
            [~DEFAULT_VALUE] => 
        )

    [AUTHORS] => Array
        (
            [ID] => 24
            [TIMESTAMP_X] => 2015-09-03 10:45:07
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHORS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 24
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => Array
                (
                    [0] => 12480
                )

            [VALUE] => Array
                (
                    [0] => 900
                )

            [DESCRIPTION] => Array
                (
                    [0] => 
                )

            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [0] => 900
                )

            [~DESCRIPTION] => Array
                (
                    [0] => 
                )

            [~NAME] => Авторы
            [~DEFAULT_VALUE] => 
        )

    [AUTHOR_RU] => Array
        (
            [ID] => 25
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHOR_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 25
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 12447
            [VALUE] => Array
                (
                    [TEXT] => <p class="Autor">Проф. А. Максимов</p>
                    [TYPE] => HTML
                )

            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [TEXT] => 

Проф. А. Максимов

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Авторы [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_RU] => Array ( [ID] => 26 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Организации [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 26 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Организации [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_RU] => Array ( [ID] => 27 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Описание/Резюме [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 27 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12448 [VALUE] => Array ( [TEXT] => <p> Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г. </p> <p class="bodytext"> Переведено с: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Перевод: Чухловин А. Б., Неворотин А. И. <br> </p> <p> Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов. </p> <br> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Переведено с: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Перевод: Чухловин А. Б., Неворотин А. И.

Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов.


[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Описание/Резюме [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [DOI] => Array ( [ID] => 28 [TIMESTAMP_X] => 2016-04-06 14:11:12 [IBLOCK_ID] => 2 [NAME] => DOI [ACTIVE] => Y [SORT] => 500 [CODE] => DOI [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 28 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12449 [VALUE] => 10.3205/ctt-2009-en-000032.01 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 10.3205/ctt-2009-en-000032.01 [~DESCRIPTION] => [~NAME] => DOI [~DEFAULT_VALUE] => ) [AUTHOR_EN] => Array ( [ID] => 37 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Author [ACTIVE] => Y [SORT] => 500 [CODE] => AUTHOR_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 37 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12459 [VALUE] => Array ( [TEXT] => <p class="Autor">By Alexander A. Maximow</p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

By Alexander A. Maximow

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Author [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_EN] => Array ( [ID] => 38 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Organization [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 38 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Organization [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_EN] => Array ( [ID] => 39 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Description / Summary [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 39 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12457 [VALUE] => Array ( [TEXT] => <p> Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909. </p> <p class="bodytext"> Translated from: <em><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.</a></em><br> Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking. <br> <br> Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.<br> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Lecture with a demonstration, held at a special meeting of the Berlin Hematological Society on 1 June 1909.

Translated from: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Translated by Claudia Koltzenburg, Alexey Chukhlovin, Athanasius Anagnostou, and Carol Stocking.

Although every attempt is made to ensure precision in the translation into English of the material in these articles, we do not guarantee nor imply their absolute accuracy.

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Description / Summary [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [NAME_EN] => Array ( [ID] => 40 [TIMESTAMP_X] => 2015-09-03 10:49:47 [IBLOCK_ID] => 2 [NAME] => Name [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 40 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => Y [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12450 [VALUE] => The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals [~DESCRIPTION] => [~NAME] => Name [~DEFAULT_VALUE] => ) [FULL_TEXT_RU] => Array ( [ID] => 42 [TIMESTAMP_X] => 2015-09-07 20:29:18 [IBLOCK_ID] => 2 [NAME] => Полный текст [ACTIVE] => Y [SORT] => 500 [CODE] => FULL_TEXT_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 42 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12451 [VALUE] => Array ( [TEXT] => <p class="bodytext"> Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области <em>area opaca</em>. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах. <br> <br> Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.<br> <br> Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.<br> <br> Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в <em>area vasculosa</em>. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах <em>area vasculosa</em>, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.<br> <br> Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами. <br> <br> Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку. <br>     <br> Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.   <br>    <br> Сосудистая сеть <em>area vasculosa</em> является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.<br>     <br> В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.<br>      <br> Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах <em>area vasculosa</em>. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.<br>      <br> Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам <em>area vasculosa</em>, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.<br>     <br> Так  же, как лимфоциты в сосудах <em>area vasculosa</em>, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу.  <br>      <br> Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам <em>area vasculosa</em>, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из <em>area vasculosa</em>. <br>     <br> Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети <em>area vasculosa</em>. Однако часть их все же поступает в кровоток. <br>       <br> Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму <em>septum transversum</em>, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.<br>      <br> Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.<br>       <br> До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному. <br>       <br> Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.<br> <br> Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.<br>     <br> Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты. </p> <p class="align-center"> __________ </p> <p class="bodytext"> Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.   </p> <p class="align-center"> __________ </p> <p class="bodytext"> Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты. <br> <br> Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.    <br> <br> Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова.  <br> <br> Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.    <br> <br> Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.     <br> <br> Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde. <br> <br> Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.    <br> <br> Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.     <br> <br> Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.       <br> <br> Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.     <br> <br> В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.    <br> <br> Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.      <br> <br> Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.     <br> <br> Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.       <br> <br> В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.     <br> <br> Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.     <br> <br> В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию. <br> <br> <b>Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)</b> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Первые клеточные элементы крови образуются, как известно, из так называемых кровяных островков - клеточных скоплений периферического мезенхиматозного мезобласта с неровными границами, связанных между собой в виде сети и расположенных в области area opaca. Уплощаясь, периферические клетки кровяных островков становятся эндотелиальными клетками, а внутренние округляются и свободно поступают в качестве первых клеток крови в жидкость, которую можно назвать плазмой крови. Мною теперь обнаружено, что эти примитивные кровяные клетки, как я их называю, никоим образом не являются эритробластами, как следовало бы по общепринятому представлению, а совершенно недифференцированными элементами с круглым светлым ядром и узкой базофильной протоплазмой; они не являются ни красными, ни белыми кровяными тельцами, хотя, скорее всего, их все же можно было бы назвать белыми кровяными тельцами, поскольку они иногда, в особенности у цыплят, имеют амебоидную форму и очень похожи на большие лимфоциты. Они далее размножаются, причем в первое время их число возрастает еще и путем замены эндотелиальных клеток в примитивных сосудах.

Спустя некоторое время становится заметным, как эти примитивные кровяные клетки разделяются на два рода. Одни (и таких большинство) вырабатывают в протоплазме гемоглобин и в результате становятся так называемыми примитивными эритробластами. Это – крупные, бурно размножающиеся, и, в конечном счете, весьма богатые гемоглобином клетки с относительно маленькими ядрами. Они служат организму длительное время, но постепенно вымирают и вытесняются дефинитивными эритробластами и эритроцитами.

Другая часть примитивных клеток крови остается лишенной гемоглобина: эти клетки теперь имеют большое светлое ядро с ядрышками, а также узкий, амебоидный, сильно базофильный ободок протоплазмы. Гистологически они полностью соответствуют понятию большого лимфоцита. Это – первые лейкоциты эмбриона, которые, таким образом, выглядят как лимфоциты.

Как мы теперь увидим, эти внутрисосудистые лимфоциты становятся исходной точкой эритропоэза в area vasculosa. Они образуются при гетеропластическом размножении вторичных эритробластов; вначале появляются мегалобласты меньшего или большего размера со светлыми ядрами, а более поздние поколения все более и более приближаются к типу нормобластов; наконец, в сосудах area vasculosa, среди пестрого клеточного многообразия мы выявляем примитивные эритробласты, очень богатые гемоглобином, а также базофильные лимфоциты и большие количества интенсивно размножающихся мегалобластов и нормобластов, расположенных скоплениями.

Однако, несмотря на продукцию эритробластов, сами эти лимфоциты не могут никак быть описаны как эритробласты, так как уже в желточном мешке они, помимо гемоглобинсодержащих клеток, дают начало также и мегакариоцитам, и различным другим кровяным элементам, не имеющим ничего общего с красными кровяными тельцами.

Эти вторичные эритробласты четко дифференцируются от примитивных и отличаются от них как меньшим объемом, так и, в особенности, у нормобластов, менее крупным и более темным ядром. Наконец, это ядро подвергается пикнозу и в состоянии дегенерации покидает клетку.
   
Я здесь намеренно не касаюсь вопроса об энуклеации эритробластов, поскольку такая постановка вопроса в настоящее время, как мне кажется, не соответствует имеющемуся в нашем распоряженнии фактическому материалу. Я нахожу, что все известные факты говорят о выталкивании ядра, и ни один – против этого процесса, в то время как за его исчезновение внутри клетки не представлено прямых доказательств – я имею в виду нормальное кроветворение. Если это так, к примеру, в богатых гемоглобином примитивных эритробластах, где часто можно видеть бледные тени ядер, то это зависит лишь от того, что основной краситель не может проникнуть сквозь толстую оболочку гемоглобина. Однако, как только ядро покидает клетку, оно сразу приобретает темную окраску.  
  
Сосудистая сеть area vasculosa является, таким образом, первым кроветворным органом эмбриона млекопитающих. Здесь возникают лимфоциты, эритроциты и мегакариоциты, но никогда – гранулоциты.
   
В то время, как разыгрываются описанные процессы во внеэмбриональных областях, в мезенхиме организма, которая вначале полностью свободна от блуждающих клеток, уже на очень ранних стадиях, например, у эмбрионов кроликов и морских свинок длиной 4-5 мм, отмечается  появление первых свободных блуждающих клеток. Они возникают путем округления и отделения из обычных недифференцированных ветвистых мезенхимных клеток.
    
Первые блуждающие клетки в целом сходны с лимфоцитами, что означает, что они большей частью выглядят так же, как и лимфоциты в сосудах area vasculosa. Сразу при первом появлении, и еще более на несколько более поздних стадиях, в мезенхиме везде видны также и блуждающие клетки другого рода, например – клетки с бледной, амебоидной, часто вакуолизированной протоплазмой и маленькими, светлыми или темными ядрами неправильной формы. Таким образом, блуждающие клетки в мезенхиме не являются разнообразными, однако они очень полиморфны, и среди них имеются переходные формы. Данные гистологические различия также не имеют особого значения, поскольку основное свойство этих клеток – их прогрессивная способность к развитию – всегда остается неизменным, и все блуждающие клетки мезенхимы равноценны.
    
Однако, наиболее важно то, что блуждающие клетки мезенхимы в морфологическом и физиологическом отношениях также идентичны лимфоцитам area vasculosa, циркулирующим внутри сосудов и в крови. И те, и другие являются свободными амебоидными недифференцированными мезенхимальными клетками, хотя, в зависимости от условий среды, в которой они находятся, эти клетки могут выглядеть очень по-разному.
   
Так  же, как лимфоциты в сосудах area vasculosa, эритробласты продуцируют и мегакариоциты, это происходит и во многих участках мезенхимы. В мезенхиме, однако, дифференцировка и развитие блуждающих клеток или лимфоцитов может проходить еще дальше: часть из них превращается здесь в зернистые миелоциты и лейкоциты. При этом большей частью возникают полиморфноядерные малые абортивные лейкоциты, которые располагаются в ткани как единичные клетки и вскоре подвергаются дегенерации или фагоцитозу. 
    
Доказательством того, что мезенхимные блуждающие клетки идентичы лимфоцитам area vasculosa, является тот факт, что эндотелий определенных тканей, прежде всего аорты, интенсивно разрастается на определенных стадиях и в особых участках, причем возникают большие скопления клеток, которые, выступая в просвет, смываются в кровь и уже в качестве настоящих лимфоцитов примешиваются в циркулирующую кровь. Здесь их совершенно невозможно отличить от лимфоцитов, происходящих из area vasculosa.
   
Здесь я бы хотел сделать и краткое замечание относительно циркулирующей крови. Несмотря на имеющиеся мнения, фактом является то, что белые кровяные тельца, а также большие лимфоциты, существуют в крови уже с наиболее ранних стадий развития, причем в значительных количествах. Большинство лимфоцитов задерживается, естественно, в качестве продуцентов эритробластов в кроветворной сосудистой сети area vasculosa. Однако часть их все же поступает в кровоток.
     
Вторым кроветворным органом эмбриона млекопитающих является печень. Среди печеночных клеток и, как известно вне сосудов, здесь образуются эритроциты, мегакариоциты и гранулоциты. Возникает вопрос, а где же искать исходный пункт этого гемопоэза? Если изучать стадии последовательно, то можно обнаружить, что вначале между печеночными клетками и сосудистым эндотелием появляются блуждающие клетки, которые выглядят точно так же, как и блуждающие клетки в остальной мезенхиме; отчасти они сходны с лимфоцитами, но при этом они бледные и имеют мелкие ядра. Если же мы пойдем дальше и изучим стадии, на которых балки печеночных клеток врастают в мезенхиму septum transversum, то мы придем к убеждению, что блуждающие клетки являются производными этой мезенхимы. Мезенхимные клетки возникают уже как таковые или еще как блуждающие клетки между печеночными клетками и выстланными эндотелием стенками также растущих сосудов. Здесь вначале они остаются неизменными на протяжении краткого периода. Однако затем они проявляют удивительную способность к развитию. Большинство блуждающих клеток поначалу превращается в растущие большие лимфоциты, которые производят большие количества эритробластов и эритроцитов. Меньшая же их часть превращается в гранулоциты и мегакариоциты. Выходит, что и в печени мы также видим ту же недифференцированную блуждающую мезенхимную клетку, лимфоцит, в качестве исходного пункта гемопоэза. Среди гепатоцитов эта клетка находит весьма благоприятные условия существования, размножается и производит самые различные элементы крови.
    
Третий, конечный орган кроветворения, который выступает на смену печени, - это костный мозг. Его возникновение я также отслеживал с самого начала. Здесь, как мы видим теперь, в молодой, недифференцированной мезенхиме, которая вторгается в хрящ и подвергает его резорбции, часть оседлых элементов превращается в блуждающие клетки, которые вначале выглядят исключительно полиморфными. Здесь почти все они, наконец, приобретают облик типичных лимфоцитов и опять становятся исходным пунктом кроветворения, которое, собственно, протекает так же, как в печени и, как и в ней, возникает вне сосудов, но, в отличие от печени, продолжается всю жизнь. И здесь путем дифференцировки и роста лимфоциты производят эритробласты, мегакариоциты и гранулоциты трех различных видов. Однако часть из них продуцирует также и себе подобных, т.е. типичные агранулярные лимфоциты и тем самым функционируют не только как миелобласты, но и как лимфобласты.
     
До сих пор, собственно, мы видели в ходе кроветворения только возникновение так называемой миелоидной ткани- эритроцитов, мегакариоцитов и гранулоцитов. Теперь можно сказать, а Schridde именно так и заявляет, что клетки, которые я ранее называл лимфоцитами, в действительности являются не таковыми, а  миелобластами.  Правда, хотя наблюдаемые мной элементы гистологически полностью соответствуют лимфоцитам, можно возразить, что в качестве лимфоцитов или лимфобластов следует описывать лишь те клетки, из которых возникновение типичных малых лимфоцитов является доказанным. Однако по Schridde такие клетки, т.е. истинные лимфобласты должны появляться много позже и выглядеть также совсем по-иному.
     
Уже, начиная с наиболее ранних стадий, отдельные экземпляры описанных блуждающих клеток могут более или менее походить на типичные малые лимфоциты, но на самом деле последние лишь относительно поздно возникают в организме в больших количествах. В костном мозге мы уже довольно часто видим (и чем позже, тем чаще) как многие клетки-потомки растущих больших лимфоцитов приобретают соответствующий вид. Однако в особо больших количествах малые лимфоциты возникают в тимусе. Об этом органе я также в последующем должен сообщить. Знание гистогенеза тимуса очень важно для единого восприятия роли лимфоцитов в организме.

Вначале тимус является чисто эпителиальным органом. Затем, уже очень рано в его мезенхимном окружении и других областях организма вновь появляются большие лимфоциты, отчасти – бледные блуждающие клетки с мелкими ядрами. Все эти амебоидные клетки теперь перемещаются в эпителиальную закладку и здесь в кратчайший срок превращаются в типичные большие лимфоциты. Таким образом, вначале происходит, собственно, то же самое,  что и в печени: первые лимфоциты тимуса, с точки зрения морфолога, несомненно, являются теми же клетками, что и первые гранулоцитообразующие лимфоциты в печени. Лишь условия существования для этих клеток, очевидно, являются совсем другими, поскольку лимфоциты в тимусе, хотя они и разрастаются исключительно интенсивно, никогда не производят эритробластов и лишь очень малое количество гранулоцитов, но обычно - только подобные себе клетки. Они вскоре инфильтрируют весь орган, становясь при разрастании все мельче и мельче, и, наконец, мы видим неисчислимое множество типичных малых лимфоцитов, которые вымываются в кровь.
   
Что касается лимфатических узлов, то при возникновении первых из них наблюдается превращение мелких, тесно прилегающих друг к другу недифференцированных мезенхимных клеток в малые амебоидные блуждающие клетки. Здесь также сначала отмечается сильный полиморфизм этих блуждающих клеток; вскоре могут возникать отдельные большие лимфоциты, однако, большей частью вначале появляются совсем небольшие, хотя и амебоидные элементы со светлыми ядрами и скудной протоплазмой. Они разрастаются, при этом частично превращаются в типичные малые лимфоциты с темными ядрами и попадают в лимфатические щели. С другой стороны, видно, что иногда они превращаются и в большие, даже гигантские лимфоциты, которые, как и в тимусе, могут опять  производить малые лимфоциты. Таким образом, можно с уверенностью подчеркнуть, что у эмбриона для продукции типичных малых лимфоцитов совсем не обязательно необходимы большие лимфоциты.

__________

Таким образом, исследование фетального кроветворения учит нас, что нельзя различать миелобласты от лимфобластов. Существует единое семейство клеток – повсеместно встречающиеся, недифференцированные, полиморфные, блуждающие мезенхимные клетки, которые, в зависимости от разнообразия условий их обитания в организме эмбриона, выглядят по-разному и могут производить различные клетки-продукты дифференцировки. Чисто гистологически у эмбриона нельзя также отличить лимфобласты от миелобластов.  

__________

Рассматривая кроветворение с интересующей нас теперь позиции во взрослом организме, следует, прежде всего, решить два вопроса, которые относятся к клеткам-агранулоцитам. Первый вопрос касается меняющихся взаимоотношений между большими и малыми лимфоцитами. Оба эти понятия были предложены на основе исследований, которые проводились во взрослом организме. Общепринятое представление состоит в том, что малые лимфоциты возникают во взрослом организме фактически путем разрастания более крупных клеток в герминальных центрах, но сами по себе они не способны размножаться далее, превращаясь в большие лимфоциты.

Теперь же, на основании собственных исследований, я думаю занять другую позицию. На самом деле, малые лимфоциты возникают во взрослом организме большей частью путем бурного размножения крупных клеток. Непосредственно после их возникновения, они в течение некоторого времени действительно не способны к размножению. Вероятно, это состояние зависит от особого ядерно-плазматического отношения, связанного с интенсивным предыдущим разрастанием. Однако я считаю с полной уверенностью, что эти зрелые малые лимфоциты в дальнейшем способны к развитию. Они попадают в кровь и циркулируют, а когда встречают подходящие условия, то повторно, в качестве полноценных недифференцированных мезенхимных клеток могут становиться исходным пунктом для разнообразных процессов развития; они, скорее всего, могут, пусть даже путем гипертрофии, вновь трансформироваться в большие лимфоциты, способные к делению. Смысл столь странного явления, состоящего в том, что лимфоциты во взрослом организме большей частью должны проходить стадию маленькой, неспособной к делению в течение определенного период клетки, состоит, как я думаю, в том, что клетки в этом состоянии особенно легко поступают в крово- и лимфоток, а потому могут оказаться повсеместно, во всех органах и тканях. Эта мысль недавно была высказана также Weidenreich.   

Малые и большие лимфоциты являются, таким образом, преходящими состояниями в жизни одного и того же семейства клеток – лимфоцитов в наиболее широком смысле слова. 

Второй вопрос касается различия между особыми лимфоцитами и миелобластами во взрослом организме. Если это различие в эмбрионе (как мы видели) не имеет обоснования, то исходя из этого, нельзя априорно заключить о невозможности их во взрослом организме. Целый ряд авторов во главе со Schridde также утверждает, что агранулоциты в лимфоидной ткани (с одной стороны) и миелоидной ткани (с другой) являются не одними и теми же большими лимфоцитами, а двумя различными типами клеток, лимфоцитами и миелобластами.   

Относительно родовой идентичности двух семейств клеток необходимо, конечно, различать, во-первых, гистологические признаки и, во-вторых – физиологические свойства, в особенности,  проспективные потенции к развитию.    

Что касается гистологических характеристик обоих семейств клеток, то я дал указания г-ну С.Чащину из моей лаборатории проверить гистологические различия, приведенные Schridde.

Насколько можно судить, исходя из полученных до сих пор результатов, уже у новорожденных животных в большинстве случаев можно отметить соответствующие различия, которые, однако, мало выражены. Лимфоциты обладают, в целом, более узкой, гомогенной каймой протоплазмы, тогда как нуклеолы в ядре крупнее и, как правило, ярко окрашены. Так называемые миелобласты в большинстве случаев, хотя и не всегда, имеют более широкий цитоплазматический ободок с более рыхлой ретикулярной структурой; его базофилия варьирует в широких пределах. Ядро содержит нуклеолы, которые, однако, мельче и не окрашиваются так отчетливо. В целом, миелобласты выглядят намного более полиморфными, нежели лимфобласты, и различия среди самих миелобластов часто более выражены, чем между миелобластами и лимфобластами.   

Следует особо обратить внимание на окраску по Altmann-Schridde, которая описана  Schridde, как важнейшее средство различения, причем оказалось, что большие клетки, не содержащие гранул при окраске азур-эозином в аденоидной ткани и костном мозге, т.е. лимфобласты и миелобласты по Schridde, в обоих случаях также содержат гранулы, но могут быть как малозернистыми, так и агранулярными; они большей частью содержат лишь немного зерен. Это тоже противоречит Schridde, согласно которому, лимфобласты всегда должны содержать гранулы, а миелобласты, наоборот, их иметь не должны никогда. Напротив, малые и средние лимфоциты содержат всегда многочисленные очень четкие зерна. Наряду с этим окрашиваются также специфические зернышки и эозинофильные гранулы. В целом этот метод дает совершенно такие же картины, как и известные ранее по Altmann, причем он представляется гораздо менее пригодным для изучения клеток крови. Различные детали окраски, на которые ссылается Schridde, не следует серьезно принимать во внимание при различении определенных семейств клеток. Само собой разумеется, что все эти картины зернистости не могут иметь никакого особого значения, поскольку гранулы в одной и той же клетке без сомнения могут возникать заново и опять исчезать в зависимости от ее функционального состояния, даже если они существуют прижизненно.    

Следовательно, если налицо определенные нестабильные и с трудом выявляемые гистологические различия, то, с другой стороны, можно предполагать, что клетки лимфатических узлов и костного мозга наверняка находятся в совсем разных условиях среды, и при этом гистологические различия можно было бы удовлетворительно объяснить только этим. Мы же видим, кроме того, что лимфоциты уже после первых эмбриональных стадий отличаются крайней степенью полиморфизма, хотя, несмотря на это, выглядят они совершенно равноценными. Одни лишь гистологические различия не дают нам возможности четкого различения лимфобластов и миелобластов. Такое различение было бы возможным лишь тогда, когда удалось бы доказать, что одни клетки никогда не могут переходить в другие, и что клетки-продукты дифференцировки являются совсем различными для обоих видов при всех возможных условиях.      

Мы  хотели бы теперь подробнее рассмотреть физиологические  или, скорее, продуктивные цитогенетические свойства наших клеток. Если лимфоциты аденоидной ткани и лимфоциты костного мозга являются равноценными клетками, а различные (в норме) продукты дифференцировки можно было бы установить только на основе различных условий существования, то следовало бы попробовать искусственно создать такие условия для лимфоцитов аденоидной ткани, т.е. для предполагаемых лимфобластов, чтобы они смогли дифференцироваться в гранулоциты и эритробласты. Известно однако, что при различных ситуациях в аденоидной ткани может наступать миелоидная трансформация. В целом, теперь также возможно доказать, что последние при этом исходят из аутохтонных элементов. Спрашивается только, какие клетки при этом рассматриваются? Известно, что это не клетки герминальных центров, которые превращаются в миелоциты и эритробласты, но это происходит с клетками, которые расположены в трабекулах лимфатических узлов и красной пульпе селезенки. Как раз теперь дуалисты усматривают в этом доказательство верности их воззрений; по их взглядам, это должны быть особые, предсуществующие миелобласты, совершенно отличные от лимфобластов, которые при этом превращаются в миелоидные элементы или в клетки сосудистой стенки. Другие исследователи опять-таки допускают, что при этом исходным пунктом трансформации являются особые адвентициальные недифференцированные мезенхимные клетки.    

В моей лаборатории я дал указание г-же Бабкиной провести специальные опыты на животных, чтобы ближе подойти к решению этого вопроса. В селезенке очень легко удалось вызвать отчасти миелоидное превращение, а именно, образование миелоцитов и миелокариоцитов; для этого достаточно ввести асептическое чужеродное тело в ткань селезенки (в его окружении скоро обнаруживаются многочисленные миелоциты и мегакариоциты). Напротив, в лимфатических узлах пока не удалось вызвать миелоидного превращения этим или другими методами. В селезенке мальпигиевы тельца также остаются неизмененными: миелоциты всегда возникают только в красной пульпе или в венозных синусах.   

Эти опыты на первый взгляд указывают также на различия миелобластов и лимфобластов. Тем не менее, я не считаю, что именно такие предварительные результаты могли бы это означать. Мы должны подумать о том, что в аденоидной ткани, в отличие от остальных областей организма, должны господствовать совершенно особые условия, которые, вероятно, пригодны для гомопластического размножения недифференцированных мезенхимных клеток (лимфоцитов). В этих зонах «брожения» обычно полностью отсутствуют предпосылки для миелоидного превращения лимфоцитов. Оба этих варианта условий, которые нужны, с одной стороны, для гомопластического роста в неизмененном недифференцированном состоянии, а с другой – для гетеропластического развития в миелоидные элементы, нельзя, очевидно, объединить друг с другом во взрослом организме. Поэтому и в искусственных условиях не удается заставить клетки герминальных центров и молодые малые лимфоциты на месте их образования переходить непосредственно в гранулоциты и эритробласты. Там же, где начинается миелоидная трансформация, напротив, прекращается гомопластическое разрастание, и зародышевые центры исчезают.     

Вероятно, молодость подавляющего большинства лимфоцитов аденоидной ткани сама по себе является препятствием для миелоидного превращения. Для этих клеток, возможно, должно пройти определенное время, пока они станут способными к миелоидной дифференцировке, и, кроме того, они для этого должны попасть в особые подходящие условия существования. Можно предположить, что, например, циркуляция в кровотоке лимфоцитов, происходящих из аденоидной ткани, особенно благоприятствует миелоидному превращению.    

Если все это представляет собой косвенные, вероятно, сомнительные указания на равноценность лимфоцитов лимфоидных и миелоидных тканей в отношении их дальнейшей потенции к развитию во взрослом организме, то, по моему мнению, существует и еще одно прямое, пока еще предварительное, доказательство, исходящее от разных авторов, описывавших гетеротопное образование миелоидных тканей, на которое слишком мало обращали внимания.      

В свое время я изучал гистогенез миелоидных тканей, который развивается в почках кролика при перевязке их главных сосудов. Этот объект особенно выгоден в том смысле, что в скудной строме почек, наверное, отсутствуют лимфоидные элементы. Выяснилось, что при этом все костномозговые элементы, гранулоциты, мегакариоциты и эритробласты возникают из лимфоцитов циркулирующей крови, т.е. – из клеток, которые, как доказано, происходят из аденоидной ткани с ее зародышевыми центрами. Малые лимфоциты крови при этом превращаются в большие лимфоциты и поступают в ткань в виде малых или уже крупных клеток. Еще внутри сосудов, или же после эмиграции из них, они далее формируют миелоциты (при накоплении гранул в протоплазме), или эритробласты (посредством выработки гемоглобина в эритробластах). Собственно миелобласты в нормальной крови, видимо, не присутствуют, хотя K.Ziegler считает большие мононуклеарные клетки в качестве таких длительно недифференцированных и способных к развитию клеток. Но таковые, согласно новейшим данным, также возникают из обычных лимфоцитов.    

Я считаю допустимым, что при гетеротопическом возникновении миелоидных элементов у человека, это может, вероятно, происходить благодаря имеющимся повсюду лимфоцитам циркулирующей крови или совершенно равноценным лимфоцитам соединительной и аденоидной тканей, но не за счет латентных миелобластов или предполагаемых размножающихся адвентициальных клеток, или же клеток сосудистой стенки.    

В целом, наконец, я прихожу к заключению о том, что и во взрослом организме нет основания признавать существование двух резко различающихся родов клеток, миелобластов и лимфобластов. В организме млекопитающих существует один вид клеток, лимфоциты в наиболее широком смысле слова, которые, в зависимости от локализации и условий существования выглядят по-разному и могут формировать различные продукты дифференцировки. Лимфоциты вездесущи, они повсюду равноценны и не могут быть различимы с позиций гистогенеза или гематогенеза. В аденоидной ткани при гомопластическом разрастании постоянно продуцируются только лимфоциты.  Возникающая при этом легко транспортируемая клеточная форма - малый лимфоцит -  циркулирует в крово- и лимфотоке по всему организму и, после определенного периода инактивации, снова приобретает полную способность к развитию.

Оригинальная публикация в: Folia Haematologica 8.1909, 125-134. (Перевод на русский язык для журнала «Клеточная терапия и трансплантация» том 1, номер 3, 2009, подготовили Чухловин А.Б., Неворотин А.И.)

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Полный текст [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [PDF_RU] => Array ( [ID] => 43 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF RUS [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_RU [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 43 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12452 [VALUE] => 558 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 558 [~DESCRIPTION] => [~NAME] => PDF RUS [~DEFAULT_VALUE] => ) [PDF_EN] => Array ( [ID] => 44 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF ENG [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 44 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12453 [VALUE] => 559 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 559 [~DESCRIPTION] => [~NAME] => PDF ENG [~DEFAULT_VALUE] => ) [NAME_LONG] => Array ( [ID] => 45 [TIMESTAMP_X] => 2023-04-13 00:55:00 [IBLOCK_ID] => 2 [NAME] => Название (для очень длинных заголовков) [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_LONG [DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 45 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 80 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Название (для очень длинных заголовков) [~DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) ) )
Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих

Загрузить версию в PDF

Проф. А. Максимов

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Переведено с: Maximow A, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909), Folia Haematologica, 8, 1909, 125-134.
Перевод: Чухловин А. Б., Неворотин А. И.

Несмотря на то, что делается все возможное для точного перевода материала этих статей на русский язык, мы не гарантируем и не предполагаем абсолютной точности переводов.


Программные статьи

						Array
(
    [KEYWORDS] => Array
        (
            [ID] => 19
            [TIMESTAMP_X] => 2015-09-03 10:46:01
            [IBLOCK_ID] => 2
            [NAME] => Ключевые слова
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => KEYWORDS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 19
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 4
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => Y
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => Y
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Ключевые слова
            [~DEFAULT_VALUE] => 
        )

    [SUBMITTED] => Array
        (
            [ID] => 20
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата подачи
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => SUBMITTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 20
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата подачи
            [~DEFAULT_VALUE] => 
        )

    [ACCEPTED] => Array
        (
            [ID] => 21
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата принятия
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => ACCEPTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 21
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата принятия
            [~DEFAULT_VALUE] => 
        )

    [PUBLISHED] => Array
        (
            [ID] => 22
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата публикации
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => PUBLISHED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 22
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата публикации
            [~DEFAULT_VALUE] => 
        )

    [CONTACT] => Array
        (
            [ID] => 23
            [TIMESTAMP_X] => 2015-09-03 14:43:05
            [IBLOCK_ID] => 2
            [NAME] => Контакт
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => CONTACT
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 23
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Контакт
            [~DEFAULT_VALUE] => 
        )

    [AUTHORS] => Array
        (
            [ID] => 24
            [TIMESTAMP_X] => 2015-09-03 10:45:07
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHORS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 24
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => Array
                (
                    [0] => 12482
                )

            [VALUE] => Array
                (
                    [0] => 900
                )

            [DESCRIPTION] => Array
                (
                    [0] => 
                )

            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [0] => 900
                )

            [~DESCRIPTION] => Array
                (
                    [0] => 
                )

            [~NAME] => Авторы
            [~DEFAULT_VALUE] => 
        )

    [AUTHOR_RU] => Array
        (
            [ID] => 25
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHOR_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 25
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Авторы
            [~DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

        )

    [ORGANIZATION_RU] => Array
        (
            [ID] => 26
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Организации
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => ORGANIZATION_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 26
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Организации
            [~DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

        )

    [SUMMARY_RU] => Array
        (
            [ID] => 27
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Описание/Резюме
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => SUMMARY_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 27
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 12477
            [VALUE] => Array
                (
                    [TEXT] => <p>
	 Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.
</p>
<h3><a href="http://www.cttjournal.com/en/archive/tom-1-nomer-3/programmnye-stati/originalnaya-versiya-stati-limfotsit-kak-obshchaya-stvolovaya-kletka-razlichnykh-elementov-krovi-v-e/">Оригинальная версия статьи</a>
<p>
</p>
</h3>
                    [TYPE] => HTML
                )

            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [TEXT] => 

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Оригинальная версия статьи

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Описание/Резюме [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [DOI] => Array ( [ID] => 28 [TIMESTAMP_X] => 2016-04-06 14:11:12 [IBLOCK_ID] => 2 [NAME] => DOI [ACTIVE] => Y [SORT] => 500 [CODE] => DOI [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 28 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12471 [VALUE] => 10.3205/ctt-2008-en-000040.01 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 10.3205/ctt-2008-en-000040.01 [~DESCRIPTION] => [~NAME] => DOI [~DEFAULT_VALUE] => ) [AUTHOR_EN] => Array ( [ID] => 37 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Author [ACTIVE] => Y [SORT] => 500 [CODE] => AUTHOR_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 37 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12472 [VALUE] => Array ( [TEXT] => <p class="Autor"> Von Prof. Dr. A. Maximow </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Von Prof. Dr. A. Maximow

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Author [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_EN] => Array ( [ID] => 38 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Organization [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 38 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Organization [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_EN] => Array ( [ID] => 39 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Description / Summary [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 39 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12473 [VALUE] => Array ( [TEXT] => <p> The original article in German. </p> <p> Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909) </p> <p class="bodytext"> <em>(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact <a href="javascript:linkTo_UnCryptMailto('qempxs.mrjsDgxx1nsyvrep2gsq');">info@<span style="display:none;">spam is bad</span>ctt-journal.com</a>, thank you.)</em> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

The original article in German.

Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere (Demonstrationsvortrag, gehalten in der außerordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909)

(NB: Despite our best efforts, we have been unable to find out who we might have to ask for permission to reproduce this article. We greatfully acknowledge some help on this issue by Springer Publishers, for any further hints please contact info@spam is badctt-journal.com, thank you.)

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Description / Summary [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [NAME_EN] => Array ( [ID] => 40 [TIMESTAMP_X] => 2015-09-03 10:49:47 [IBLOCK_ID] => 2 [NAME] => Name [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 40 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => Y [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12474 [VALUE] => The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => The original article in German. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere [~DESCRIPTION] => [~NAME] => Name [~DEFAULT_VALUE] => ) [FULL_TEXT_RU] => Array ( [ID] => 42 [TIMESTAMP_X] => 2015-09-07 20:29:18 [IBLOCK_ID] => 2 [NAME] => Полный текст [ACTIVE] => Y [SORT] => 500 [CODE] => FULL_TEXT_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 42 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Полный текст [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [PDF_RU] => Array ( [ID] => 43 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF RUS [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_RU [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 43 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => PDF RUS [~DEFAULT_VALUE] => ) [PDF_EN] => Array ( [ID] => 44 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF ENG [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 44 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12478 [VALUE] => 590 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 590 [~DESCRIPTION] => [~NAME] => PDF ENG [~DEFAULT_VALUE] => ) [NAME_LONG] => Array ( [ID] => 45 [TIMESTAMP_X] => 2023-04-13 00:55:00 [IBLOCK_ID] => 2 [NAME] => Название (для очень длинных заголовков) [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_LONG [DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 45 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 80 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Название (для очень длинных заголовков) [~DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) ) )
Оригинальная версия статьи. Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих

Доклад с демонстрацией, сделан на чрезвычайном заседании Берлинского гематологического Общества 1 июня 1909 г.

Оригинальная версия статьи

Программные статьи

						Array
(
    [KEYWORDS] => Array
        (
            [ID] => 19
            [TIMESTAMP_X] => 2015-09-03 10:46:01
            [IBLOCK_ID] => 2
            [NAME] => Ключевые слова
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => KEYWORDS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 19
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 4
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => Y
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => Y
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Ключевые слова
            [~DEFAULT_VALUE] => 
        )

    [SUBMITTED] => Array
        (
            [ID] => 20
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата подачи
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => SUBMITTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 20
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата подачи
            [~DEFAULT_VALUE] => 
        )

    [ACCEPTED] => Array
        (
            [ID] => 21
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата принятия
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => ACCEPTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 21
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата принятия
            [~DEFAULT_VALUE] => 
        )

    [PUBLISHED] => Array
        (
            [ID] => 22
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата публикации
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => PUBLISHED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 22
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата публикации
            [~DEFAULT_VALUE] => 
        )

    [CONTACT] => Array
        (
            [ID] => 23
            [TIMESTAMP_X] => 2015-09-03 14:43:05
            [IBLOCK_ID] => 2
            [NAME] => Контакт
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => CONTACT
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 23
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Контакт
            [~DEFAULT_VALUE] => 
        )

    [AUTHORS] => Array
        (
            [ID] => 24
            [TIMESTAMP_X] => 2015-09-03 10:45:07
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHORS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 24
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => Array
                (
                    [0] => 12503
                )

            [VALUE] => Array
                (
                    [0] => 903
                )

            [DESCRIPTION] => Array
                (
                    [0] => 
                )

            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [0] => 903
                )

            [~DESCRIPTION] => Array
                (
                    [0] => 
                )

            [~NAME] => Авторы
            [~DEFAULT_VALUE] => 
        )

    [AUTHOR_RU] => Array
        (
            [ID] => 25
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHOR_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 25
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 12489
            [VALUE] => Array
                (
                    [TEXT] => <p class="Autor">А. Я. Фриденштейн</p>
                    [TYPE] => HTML
                )

            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [TEXT] => 

А. Я. Фриденштейн

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Авторы [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_RU] => Array ( [ID] => 26 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Организации [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 26 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12490 [VALUE] => Array ( [TEXT] => <p class="bodytext"><b>От редакции</b><br />Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.<br> Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия <br />E-mail: <a href="javascript:linkTo_UnCryptMailto('qempxs.qevoixmrkDgxx1nsyvrep2gsq');">marketing@<span style="display:none;">spam is bad</span>ctt-journal.com<br /><br /></a> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

От редакции
Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.
Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия
E-mail: marketing@spam is badctt-journal.com

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Организации [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_RU] => Array ( [ID] => 27 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Описание/Резюме [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 27 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12491 [VALUE] => Array ( [TEXT] => <h3>От редакции</h3> <p class="bodytext">Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.<br /><br />С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток <em>in vivo</em>. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.<br /><br />Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).<br /><br />Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья &quot;Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели&quot; (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).<br /><br />Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих &quot;стромальных клеток&quot;.<br /><br />Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся <em>de novo</em> клеток к классу фибробластов.<br /><br />Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.</p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

От редакции

Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.

С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток in vivo. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.

Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).

Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).

Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих "стромальных клеток".

Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся de novo клеток к классу фибробластов.

Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Описание/Резюме [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [DOI] => Array ( [ID] => 28 [TIMESTAMP_X] => 2016-04-06 14:11:12 [IBLOCK_ID] => 2 [NAME] => DOI [ACTIVE] => Y [SORT] => 500 [CODE] => DOI [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 28 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12492 [VALUE] => 10.3205/ctt-2009-en-000033.01 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 10.3205/ctt-2009-en-000033.01 [~DESCRIPTION] => [~NAME] => DOI [~DEFAULT_VALUE] => ) [AUTHOR_EN] => Array ( [ID] => 37 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Author [ACTIVE] => Y [SORT] => 500 [CODE] => AUTHOR_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 37 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12496 [VALUE] => Array ( [TEXT] => <p class="Autor">A. Friedenstein</p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

A. Friedenstein

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Author [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_EN] => Array ( [ID] => 38 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Organization [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 38 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Organization [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_EN] => Array ( [ID] => 39 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Description / Summary [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 39 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12497 [VALUE] => Array ( [TEXT] => <p><b>Republished from Modern Trends in Human Leukemia VIII (1989), <br>Ed. R. Neth, with kind permission by Springer Science and Business Media.</b></p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Republished from Modern Trends in Human Leukemia VIII (1989),
Ed. R. Neth, with kind permission by Springer Science and Business Media.

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Description / Summary [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [NAME_EN] => Array ( [ID] => 40 [TIMESTAMP_X] => 2015-09-03 10:49:47 [IBLOCK_ID] => 2 [NAME] => Name [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 40 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => Y [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12493 [VALUE] => Stromal-hematopoietic interrelationships: Maximov's ideas and modern models [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Stromal-hematopoietic interrelationships: Maximov's ideas and modern models [~DESCRIPTION] => [~NAME] => Name [~DEFAULT_VALUE] => ) [FULL_TEXT_RU] => Array ( [ID] => 42 [TIMESTAMP_X] => 2015-09-07 20:29:18 [IBLOCK_ID] => 2 [NAME] => Полный текст [ACTIVE] => Y [SORT] => 500 [CODE] => FULL_TEXT_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 42 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Полный текст [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [PDF_RU] => Array ( [ID] => 43 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF RUS [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_RU [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 43 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12494 [VALUE] => 591 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 591 [~DESCRIPTION] => [~NAME] => PDF RUS [~DEFAULT_VALUE] => ) [PDF_EN] => Array ( [ID] => 44 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF ENG [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 44 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12498 [VALUE] => 601 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 601 [~DESCRIPTION] => [~NAME] => PDF ENG [~DEFAULT_VALUE] => ) [NAME_LONG] => Array ( [ID] => 45 [TIMESTAMP_X] => 2023-04-13 00:55:00 [IBLOCK_ID] => 2 [NAME] => Название (для очень длинных заголовков) [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_LONG [DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 45 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 80 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Название (для очень длинных заголовков) [~DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) ) )
Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели

Загрузить версию в PDF

А. Я. Фриденштейн

От редакции
Яна Сергеевна Оникийчук, переводчик и консультант по маркетингу, журнал КТТ.
Адрес для корреспонденции: 194355, Санкт-Петербург, пр. Просвещения, 7-1-331, Россия
E-mail: marketing@spam is badctt-journal.com

От редакции

Если А. А. Максимова считают первооткрывателем гемопоэтических стволовых клеток, то А. Я. Фриденштейна можно смело назвать первооткрывателем мезенхимальных (или, как их позднее стали называть, стромальных) клеток костного мозга. К сожалению, должный резонанс его работы вызывали только спустя несколько десятков лет, но и в тот момент современники смогли по достоинству оценить их основополагающий характер.

С конца 60х годов Фриденштейн и его сотрудники проводили глубокие исследования в области стромальных клеток костного мозга различных видов животных, включая человека. При этом были разработаны методы, практически не претерпевшие изменений с того времени, включая анализ формирования колоний стромальных клеток костного мозга, образование штаммов и трансплантация стромальных клеток in vivo. Фриденштейн описал дифференциацию стволовых клеток костного мозга в клетки костной ткани, хряща и жировой ткани, а также в клетки стромы костного мозга. Кроме того, он был основоположником теории, согласно которой стромальные клетки костного мозга являются полипотентными клетками-предшественницами.

Эксперименты Фриденштейна впоследствии были повторены другими исследователями, в частности Weissman и соавт. (Irving L. Weissman et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490-494, 2009) и Bianco и соавт. (Paolo Bianco et al. Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, Volume 131, Issue 2, 324-336, 2007).

Особое внимание в своей работе Фриденштейн уделял исследованиям Максимова и развитию его идей. Анализируя его данные в статьях, докладах и лекциях, сопоставляя их с результатами, полученными к тому времени на моделях селезеночных и агаровых колоний, он возродил (сформировал) у своих современников интерес к научным работам и проблемам, поднятых в них, а понятие «стволовые клетки» широко вошло в научную терминологию. Ярким примером тому является его статья "Взаимоотношения между гемопоэтическими стволовыми клетками и клетками стромы: идеи Максимова и современные модели" (Friedenstein A.J. Stromal-hematopoietic interrelationships: Maximov's ideas and modem models. Haematol. Blood Transfus. 1989; 32: 1 59-67).

Эта работа посвящена оценке взаимодействий между гемопоэтическими и стромальными клетками костного мозга, а также определению гистологического типа этих "стромальных клеток".

Идея такого взаимодействия была ключевым моментом теории гемопоэза, разработанной А.А.Максимовым в начала ХХ века. Согласно этой теории, коммитированные предшественники гемопоэтических клеток образуются из стволовой клетки под действием локальных стимулов со стороны стромы костного мозга, которые создают условия для их дифференцировки. Работы Максимова намного опередили свое время и были встречены современниками достаточно скептически. Сегодня идеи Максимова признаны мировой наукой. В своей статье, опубликованной в данном номере журнала, Фриденштейн пытается ответить на вопрос, к какому именно гистологическому типу принадлежат эти стромальные клетки, играющие столь существенную роль в гемопоэзе а также установить механизм их взаимодействия с гемопоэтическими клетками в костном мозге. Как и Максимов, Фриденштейн особое внимание уделяет фибробластам, доказывая их роль в качестве важнейшего элемента микроокружения в костном мозге. Свои заключения он сопровождает результатами, полученными на двух экспериментальных моделях: гетеротопической трансплантации клеток костного мозга и фидерных эффектах стромальных клеток в культурах Декстера. Фриденштейн также подтверждает образование фибробластов при культивировании сгустка, получаемого при свертывании плазмы. Впервые это явление было описано Максимовым, однако подверглось значительной критике и не было воспринято всерьез. Фриденштейн же доказал, что формирование фибробластов в культуре не связано с изначальным присутствием в плазме фрагментов сосудистой стенки, которые могли быть их источником, а также доказал гистологическую принадлежность образующихся de novo клеток к классу фибробластов.

Рассматриваемая статья представляет собой своеобразное связующее звено между идеями Максимова и современными подходами, которые развивали А.Я.Фриденштейн и его научная школа. Представленная работа является по сей день актуальной и важной для специалистов в области гематологии и трансплантологии.

Программные статьи

						Array
(
    [KEYWORDS] => Array
        (
            [ID] => 19
            [TIMESTAMP_X] => 2015-09-03 10:46:01
            [IBLOCK_ID] => 2
            [NAME] => Ключевые слова
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => KEYWORDS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 19
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 4
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => Y
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => Y
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Ключевые слова
            [~DEFAULT_VALUE] => 
        )

    [SUBMITTED] => Array
        (
            [ID] => 20
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата подачи
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => SUBMITTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 20
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата подачи
            [~DEFAULT_VALUE] => 
        )

    [ACCEPTED] => Array
        (
            [ID] => 21
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата принятия
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => ACCEPTED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 21
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата принятия
            [~DEFAULT_VALUE] => 
        )

    [PUBLISHED] => Array
        (
            [ID] => 22
            [TIMESTAMP_X] => 2015-09-02 17:21:42
            [IBLOCK_ID] => 2
            [NAME] => Дата публикации
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => PUBLISHED
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 22
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => DateTime
            [USER_TYPE_SETTINGS] => 
            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Дата публикации
            [~DEFAULT_VALUE] => 
        )

    [CONTACT] => Array
        (
            [ID] => 23
            [TIMESTAMP_X] => 2015-09-03 14:43:05
            [IBLOCK_ID] => 2
            [NAME] => Контакт
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => CONTACT
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 23
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 
            [VALUE] => 
            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => 
            [~DESCRIPTION] => 
            [~NAME] => Контакт
            [~DEFAULT_VALUE] => 
        )

    [AUTHORS] => Array
        (
            [ID] => 24
            [TIMESTAMP_X] => 2015-09-03 10:45:07
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHORS
            [DEFAULT_VALUE] => 
            [PROPERTY_TYPE] => E
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => Y
            [XML_ID] => 24
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 3
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => Y
            [VERSION] => 1
            [USER_TYPE] => EAutocomplete
            [USER_TYPE_SETTINGS] => Array
                (
                    [VIEW] => E
                    [SHOW_ADD] => Y
                    [MAX_WIDTH] => 0
                    [MIN_HEIGHT] => 24
                    [MAX_HEIGHT] => 1000
                    [BAN_SYM] => ,;
                    [REP_SYM] =>  
                    [OTHER_REP_SYM] => 
                    [IBLOCK_MESS] => N
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => Array
                (
                    [0] => 12516
                )

            [VALUE] => Array
                (
                    [0] => 903
                )

            [DESCRIPTION] => Array
                (
                    [0] => 
                )

            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [0] => 903
                )

            [~DESCRIPTION] => Array
                (
                    [0] => 
                )

            [~NAME] => Авторы
            [~DEFAULT_VALUE] => 
        )

    [AUTHOR_RU] => Array
        (
            [ID] => 25
            [TIMESTAMP_X] => 2015-09-02 18:01:20
            [IBLOCK_ID] => 2
            [NAME] => Авторы
            [ACTIVE] => Y
            [SORT] => 500
            [CODE] => AUTHOR_RU
            [DEFAULT_VALUE] => Array
                (
                    [TEXT] => 
                    [TYPE] => HTML
                )

            [PROPERTY_TYPE] => S
            [ROW_COUNT] => 1
            [COL_COUNT] => 30
            [LIST_TYPE] => L
            [MULTIPLE] => N
            [XML_ID] => 25
            [FILE_TYPE] => 
            [MULTIPLE_CNT] => 5
            [TMP_ID] => 
            [LINK_IBLOCK_ID] => 0
            [WITH_DESCRIPTION] => N
            [SEARCHABLE] => N
            [FILTRABLE] => N
            [IS_REQUIRED] => N
            [VERSION] => 1
            [USER_TYPE] => HTML
            [USER_TYPE_SETTINGS] => Array
                (
                    [height] => 200
                )

            [HINT] => 
            [PROPERTY_VALUE_ID] => 12505
            [VALUE] => Array
                (
                    [TEXT] => <p class="Autor">А. Я. Фриденштейн</p>
                    [TYPE] => HTML
                )

            [DESCRIPTION] => 
            [VALUE_ENUM] => 
            [VALUE_XML_ID] => 
            [VALUE_SORT] => 
            [~VALUE] => Array
                (
                    [TEXT] => 

А. Я. Фриденштейн

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Авторы [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_RU] => Array ( [ID] => 26 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Организации [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 26 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Организации [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_RU] => Array ( [ID] => 27 [TIMESTAMP_X] => 2015-09-02 18:01:20 [IBLOCK_ID] => 2 [NAME] => Описание/Резюме [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 27 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12506 [VALUE] => Array ( [TEXT] => <h3>Аудиозапись</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Аудиозапись

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Описание/Резюме [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [DOI] => Array ( [ID] => 28 [TIMESTAMP_X] => 2016-04-06 14:11:12 [IBLOCK_ID] => 2 [NAME] => DOI [ACTIVE] => Y [SORT] => 500 [CODE] => DOI [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 28 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12507 [VALUE] => 10.3205/wsc-2009-en-000041.01 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 10.3205/wsc-2009-en-000041.01 [~DESCRIPTION] => [~NAME] => DOI [~DEFAULT_VALUE] => ) [AUTHOR_EN] => Array ( [ID] => 37 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Author [ACTIVE] => Y [SORT] => 500 [CODE] => AUTHOR_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 37 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12508 [VALUE] => Array ( [TEXT] => <p class="Autor">By Alexander J. Friedenstein</p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

By Alexander J. Friedenstein

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Author [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [ORGANIZATION_EN] => Array ( [ID] => 38 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Organization [ACTIVE] => Y [SORT] => 500 [CODE] => ORGANIZATION_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 38 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Organization [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [SUMMARY_EN] => Array ( [ID] => 39 [TIMESTAMP_X] => 2015-09-02 18:02:59 [IBLOCK_ID] => 2 [NAME] => Description / Summary [ACTIVE] => Y [SORT] => 500 [CODE] => SUMMARY_EN [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 39 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12509 [VALUE] => Array ( [TEXT] => <h3>Audio</h3> <p> <a href="http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein" target="_blank">http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein</a> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

Audio

http://www.science-connections.com/Wilsede-Activities/multimedia/audio.html#friedenstein

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Description / Summary [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [NAME_EN] => Array ( [ID] => 40 [TIMESTAMP_X] => 2015-09-03 10:49:47 [IBLOCK_ID] => 2 [NAME] => Name [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 80 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 40 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => Y [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12510 [VALUE] => On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Lecture at Wilsede Meeting 1988, Audio) [~DESCRIPTION] => [~NAME] => Name [~DEFAULT_VALUE] => ) [FULL_TEXT_RU] => Array ( [ID] => 42 [TIMESTAMP_X] => 2015-09-07 20:29:18 [IBLOCK_ID] => 2 [NAME] => Полный текст [ACTIVE] => Y [SORT] => 500 [CODE] => FULL_TEXT_RU [DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 42 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 200 ) [HINT] => [PROPERTY_VALUE_ID] => 12515 [VALUE] => Array ( [TEXT] => <p> The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, <a href="http://www.ctt-journal.com">http://www.ctt-journal.com</a>) </p> <p> URL: <a href="http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenstein-1988-wilsede.pdf" target="_blank">http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...</a> </p> [TYPE] => HTML ) [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => Array ( [TEXT] =>

The transcript was prepared by Liudmila Lashkouskaya, René J. Hornung and Claudia Koltzenburg (Cellular Therapy and Transplantation, http://www.ctt-journal.com)

URL: http://www.cttjournal.com/upload/iblock/597/on-stromal_hematopoietic-interrelationships-aj-friedenst...

[TYPE] => HTML ) [~DESCRIPTION] => [~NAME] => Полный текст [~DEFAULT_VALUE] => Array ( [TEXT] => [TYPE] => HTML ) ) [PDF_RU] => Array ( [ID] => 43 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF RUS [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_RU [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 43 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12511 [VALUE] => 602 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 602 [~DESCRIPTION] => [~NAME] => PDF RUS [~DEFAULT_VALUE] => ) [PDF_EN] => Array ( [ID] => 44 [TIMESTAMP_X] => 2015-09-09 16:05:20 [IBLOCK_ID] => 2 [NAME] => PDF ENG [ACTIVE] => Y [SORT] => 500 [CODE] => PDF_EN [DEFAULT_VALUE] => [PROPERTY_TYPE] => F [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 44 [FILE_TYPE] => doc, txt, rtf, pdf [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => [USER_TYPE_SETTINGS] => [HINT] => [PROPERTY_VALUE_ID] => 12512 [VALUE] => 603 [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => 603 [~DESCRIPTION] => [~NAME] => PDF ENG [~DEFAULT_VALUE] => ) [NAME_LONG] => Array ( [ID] => 45 [TIMESTAMP_X] => 2023-04-13 00:55:00 [IBLOCK_ID] => 2 [NAME] => Название (для очень длинных заголовков) [ACTIVE] => Y [SORT] => 500 [CODE] => NAME_LONG [DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) [PROPERTY_TYPE] => S [ROW_COUNT] => 1 [COL_COUNT] => 30 [LIST_TYPE] => L [MULTIPLE] => N [XML_ID] => 45 [FILE_TYPE] => [MULTIPLE_CNT] => 5 [TMP_ID] => [LINK_IBLOCK_ID] => 0 [WITH_DESCRIPTION] => N [SEARCHABLE] => N [FILTRABLE] => N [IS_REQUIRED] => N [VERSION] => 1 [USER_TYPE] => HTML [USER_TYPE_SETTINGS] => Array ( [height] => 80 ) [HINT] => [PROPERTY_VALUE_ID] => [VALUE] => [DESCRIPTION] => [VALUE_ENUM] => [VALUE_XML_ID] => [VALUE_SORT] => [~VALUE] => [~DESCRIPTION] => [~NAME] => Название (для очень длинных заголовков) [~DEFAULT_VALUE] => Array ( [TYPE] => HTML [TEXT] => ) ) )
On stromal-hematopoietic interrelationships: Maximov's ideas and modern models. (Лекция на Wilsede Meeting 1988, Аудиозапись)

Загрузить версию в PDF

А. Я. Фриденштейн